@article{M2AN_2000__34_2_377_0, author = {Kohn, Robert V. and Niethammer, Barbara}, title = {Geometrically nonlinear shape-memory polycrystals made from a two-variant material}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {377--398}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1765665}, zbl = {0978.74015}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_2_377_0/} }
TY - JOUR AU - Kohn, Robert V. AU - Niethammer, Barbara TI - Geometrically nonlinear shape-memory polycrystals made from a two-variant material JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 377 EP - 398 VL - 34 IS - 2 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_2_377_0/ LA - en ID - M2AN_2000__34_2_377_0 ER -
%0 Journal Article %A Kohn, Robert V. %A Niethammer, Barbara %T Geometrically nonlinear shape-memory polycrystals made from a two-variant material %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 377-398 %V 34 %N 2 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_2_377_0/ %G en %F M2AN_2000__34_2_377_0
Kohn, Robert V.; Niethammer, Barbara. Geometrically nonlinear shape-memory polycrystals made from a two-variant material. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 2, pp. 377-398. http://www.numdam.org/item/M2AN_2000__34_2_377_0/
[1] Proposed experimental test of a theory of fine microstructures and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl
and ,[2] Wlp-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
and ,[3] Theory of martensitic microstructure and the shape-memory effect, unpublished lecture notes.
,[4] Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Rat Mech. Anal. 139 (1998) 99-180. | MR | Zbl
and ,[5] Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. Detta XL, V. Ser., Mem. Mat. 9 (1985) 313-322. | MR | Zbl
,[6] A fast algorithm for the simulation of polycrystalline misfïts: martensitic transformations in two space dimensions, Proc. Roy. Soc. Lond. Ser. A (to appear). | MR | Zbl
and ,[7] Numerical simulation of martensitic transformations in two- and three-dimensional polycrystals, J. Mech. Phys. Solids (to appear). | MR | Zbl
and ,[8] On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426. | MR | Zbl
and ,[9] Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413. | MR | Zbl
,[10] Bounds for deformations in terms of average strains, in Inequalities III, O. Shisha Ed., Academic Press (1972) 129-143. | MR | Zbl
[11] Uniqueness of Non-Linear Elastic Equilibrium for Prescribed Boundary Displacements and Sufficiently Small Strains. Comm. Pure Appl. Math. 25 (1972) 617-635. | MR | Zbl
,[12] The relaxation of a double-well energy. Continuum Mech Thermodyn. 3 (1991) 193-236. | MR | Zbl
,[13]
and , in preparation (1999).[14] Optimal design and relaxation of variational problems II. Comm. Pure. Appl. Math. 34 (1986) 139-182. | MR | Zbl
and ,[15] Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal.99 (1987) 189-212. | MR | Zbl
,[16] The influence of texture on the shape-memory effect in polycrystals. Acta. Mater. 46 (1998) 5457-5473.
and ,