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LIMITING BEHAVIOR FOR AN ITERATED VISCOSITY*

ClPRIAN FOIAS, MlCHAEL S. JOLLY1 AND OSCAR P . MANLEY2

Abstract. The behavior of an ordinary differential équation for the low wave number velocity mode
is analyzed. This équation was derived in [5] by an itérative process on the two-dimensional Navier-
Stokes équations (NSE). It resembles the NSE in form, except that the kinematic viscosity is replaced
by an itérâted viscosity which is a partial sum, dependent on the low-mode velocity. The convergence
of this sum as the number of itérations is taken to be arbitrarily large is explored. This leads to a
limiting dynamical System which displays several unusual mathematical features.

Mathematics Subject Classification. 35Q30, 37L65.

Received: December 22, 1999.

INTRODUCTION

The quest to find a closed form model of turbulence, started long ago (see e.g. [10,11]) and has involved
many different approaches. None have succeeded. One of the more recent efforts amounts to finding an inertial
manifold for the 2-D Navier-Stokes équations. To date, however, this équation lies just beyond the reach of
the current existence resuit s for inertial manifolds. There is however, a certain itérative process introduced
in [5], which leads to a flnite System of ordinary differential équations that while not necessarily equivalent
to the Navier-Stokes équations, does enjoy many of the same mathematical properties. The process uses an
approximate inertial manifold first considered in [4], to eliminate successive portions of the high wave number
range of the spectrum of turbulent fluid flow. This System differs from most based on approximate inertial
manifolds, in that an increase in the number of itérations does not further complicate the convective term, but
rather adds to a series that forms a certain iterated viscosity. While it was shown in [6] that this System is
dissipâtive for any finite number of itérations, until now the behavior as the number of itérations is taken to be
arbitrarily large has not been analyzed. We show in this work that even though the iterated viscosity may not
be bounded everywhere as the number of itérations is increased, we can still make sensé of a limiting dynamical
System.

To be slightly more spécifie, the System which is derived from the Navier-Stokes équations in two space
dimensions with periodic boundary conditions, amounts to a differential équation for the low wave number
mode yi with an iterated viscosity u[n (yi), where n is the number of itérations. In [5] an exact form for
the differential équation for yi is presented in which both the iterated viscosity z/}n (t/i) and nonlinear terms
have been greatly simplified. These simplifications are mainly due to the spectral range of certain projections
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associated with the approximate inertial manifolds. Their proof is provided in [6], while the possible physical
interprétations of some of the mathematical features of the system were discussed in [5]. From the physical
point of view, the process that générâtes the équation for y\ can be interpreted as following the successive
decay of large turbulent eddies int o smaller and smaller ones, as conceived in the classical picture of cascading
turbulence. The iterated addition of the higher and higher spectral bands serves to generate terms which are
readily recognized as contributions to the iterated viscosity in the équation for the low wavenumber velocity
field.

In this paper we estimate the iterated viscosity in terms of the data for a given flow (e.g. Grashof number,
etc). We introducé a time-average of i/i (yi) as an effective viscosity for which we can obtain a sharper
estimate. We then use this effective viscosity and the maximal ergodic theorem to obtain a statistical estimate
for v[ (yi) on the global attractor Ai for the équation for y1 after n itérations. The dissipativity of the
équation for yi, is uniform in n, in that there is a common absorbing bail of a certain radius Ri. At the same
time we can dérive uniform bounds on i/i (yi ) (independent of n) in a bail of a certain radius r\. In order to
make ri > Ri, however, our estimâtes would require that y\ extend deep into the dissipative range [9].

To be worthwhile, we insist that yi be limited to modes of much lower energy. This opens the possibility
of a singular set <S, consisting of ail y\ such that fi (yi) —* 00. Nevertheless we show that in the limit the
itérative process provides a dynamical System with hitherto unrecognized properties which may be of more
gênerai mathematical interest. Any orbit passing through S does so along a trajectory of a purely linear
System, instantaneously in time, and perhaps losing uniqueness both upon entry (in the past) and exit (in the
future). Despite the possible lack of uniqueness, the global attractor Ai of the limiting system, defined to
consist of all solutions which exist and are bounded for all time, makes sense. We find then that {Ai } is
upper semicontinuous, as any neighborhood of Ai contains Ai for large enough n. This limiting behavior
is determined by considering the trajectories as a function of arclength.

In a broader sense, the analysis here sheds some light on the algebraic properties of itérations of the convective
term in the Navier-Stokes équations, and implicitly raises some open questions on this topic. We plan to report
on the physical scope of our results here in a future publication.

As should be clear from this introduction, this paper originates in joint work with Roger Temam, to whom
we are connected through a long scientific collaboration. In all this time we have admired Roger for his great
mathematica! talent, sustained diligence, and sound scientific judgement; but above all, for his caring friendship.
We dedicate this paper to him on the occasion of his sixtieth birthday, with our best wishes for the continuation
of his ascending scientific car eer.

1. PRELIMINARIES

The periodic, incompressible Navier-Stokes équations

-T^ - uAu + (u • W)u + Vp = F,

div u = 0

X'wdx = 0
t

in Q, = [0,L]2 can be written as a differential équation in a certain Hubert space H (see [1] or [12]),

du
+vAu + B(u,u)=f, u€H. (1.1)
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In fact H is the domain in L2{Vt)2 of the space of all IR2-valued trigonométrie polynomials u such that

V • u = 0, and I u(x)dx = 0.
Jn

The scalar product in H is defined by

(utv) = / u(x)-v(x)dxy where a - b = a\b\ +
Jn

and the norm in H is a x 1/2

Recall that A — — A defined on
VA = {ueH: -Au e H}-

This operator is self-adjoint and its eigenvalues are of the form

^ ) k-k, where k e Z2 \ {O}-

We dénote by 0 < Ào < Ai < • • • these eigenvalues arranged in an increasing order and counted according to
their multiplicities, and write WQ,WI,W2,- • • <> for the corresponding eigenvectors.

Clearly the positive square root of A is defined by linearity from

Al/2w3 = \]/2w3, for j = 0,1, 2 , . . .

on the set
CX)

VAi/2 = {ue H: ^2XJ(U,WJ)2 < oo}-
j-o

Following an old tradition we will write V = P41/2 and the natural norm on V will be

2

[ ^
We define the projectors

P(X): H -+ span{tüj|Aj < A}-
It is assumed that all the energy in the body force ƒ is concentrated in a certain number of modes with low
eigenvalues so that

P(Xf)f = ƒ , for some A/ < 00 .

Consider for the moment, fixing some wavenumber K\> XJ . We set

K J = 2 J - 1 K 1 , ^0 = AQ/2 - 2-K/L

and henceforth index the projectors as

P3 = P { K 2
3 ) ,Q3=I~P3.

Consider also a fixed n > 1, and set
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where v is the kinematic viscosity and B(u) ~ B{u,u) is the original bilinear term in (1.1)

B(u,v) = n[(u-V>],

where

y? = Ily? + (ƒ - n)</>

dénotes the Helmholtz décomposition of a vector field into its divergence free component (divlly? = 0) and its
gradient component.

For descending j = n, n — 1, . . . , 1 the following are recursively defined

^ ) (1.2)
1QJBJ+1(yj) (1.3)

B3{y3) = P,[B3+1{y3) + B'J+1(y])z0} - u3+x{yj)^^Ay3 . (1.5)

The reason for including the last term in the définition of B3 is to preserve at each stage the orthogonality of
the bilinear term with respect to Ay3, i.e.

(B3(yj),Ayj) = 0 (1.6)

corresponding to

(B(u,u),Au) =0 (1.7)

for the bilinear term in the Navier-Stokes équations (for two different proofs of the latter, see [1] and [5]).
It was shown in [6] that the increase in the complexity of (1.2) through (1.5) with each successive itération

downward in j is only apparent. In fact we have in those équations

I/?+i(%) = v > B3+i(y3) = B(yj)> for j = n,n - 1 , . . . , 1 . (1.8)

In this paper we concentrate on the équation for the lowest modes, which thanks to (1.8) can be simply
expressed as

(1.9)

with

and

J3i(yi) = Pi[B(yi) + J3'(yi)zi] - v
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where we may now define in ascending order

zi = -{vA)~1Q1B(yuy1) , y2 = yi + zi

z2 = ~(uA)~1Q2B(y2, y2) , 2/3 = V2 + z2

(1.11)

yn) , yn+i =yn + z-n-

Note the change in notation: henceforth y^ for j = 2 ,3 , . . . , 2/n+i shall be defined as in (1.11) and are no longer
taken to be the solutions to the differential équations in (1.2). Note also that the last term in Bi(yi) can be
cancelled using the second term in v[n* to write the équation for yx simply as

f Pi[2%i) + B'(3/1)21] = f , (1-12)
ut

where

We will use several other relations involving the bilinear term in the Navier-Stokes équations which are valid
whenever all the implied opérations are meaningful. Integrating

j , f c = l j

by parts and applying the divergence free condition gives

(B(u,v),w) = -(B(u,w),v). (1.14)

The bilinear term also enjoys the enstrophy invariance [8]

(B(Av, v), u) - (B(v, Av), u) + (B(v, v), Au) = 0. (1.15)

We will also need Agmon's inequality in 2-D

ll̂ lloo < cii^i1/2!^^!1/2, (i.i6)

where the constant C\ is a universal, and of the order of unity. If the spectrum of u is in a wave number interval
of the form [K, 2K], for some K > 0 then

\\u\\oo <

where
||u||oo =

2. AN ESTIMATE FOR v[n^

We begin by considering the rate of change of enstrophy associated with the low wave number velocity field,
i, which, thanks to (1.6), satisfies

\ ^ ^ \ ^ U , A y i ) . (2.1)
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The use of Schwarz, Poincaré and Young's inequalities leads to

d t

so that the bail of radius

is absorbing in V. Thus for (1.9) there exists a global attractor Ai = A^ C S||.||(0, i?i).

Lemma 2.1.

(2.2)

< ( 2 - 3 )

1 = 1

for a certain universal constant c2.

Proof. We divide the interval between KQ and K,\ into two equal parts, denoting the velocity field in the upper
half by 20»

 a n d in the lower half by y0. Next subdivide the interval between K0 and «i/2 into two equal parts,
denoting the velocity field in the upper half by z_i, and in the iower half by y~\. Repeat this process of
successive subdivisions for additional p — 1 steps, with the remaining lower portion of the spectrum in the final
step being designated as z_p. Then for any i we can think of yi as

Choose p such that

Applying (1.16), we have

= z_p + . . . + 2-i

« i

+ zx... + Zi-i (2.5)

i - l

i - l

i - l

\*j\\<<nfi(i+P)1/2\\Vi\\
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For i and p both larger than 1, we have j -\-p < 2jp, so that

(
\ 1/2

log-) ||y.||, (2.6)

«o/

where c dénotes different absolute constants.

Decomposing the bilinear term and using the fact that QtB(yl-iiyï-i) = 0, we may write

uAz% = -Q%

Applying (1.16) and (2.6) we have

||y,-i|| + ||ï/,-i|| + ||z,_i|| \\zx-i\

Since the wave numbers of the z% are bounded by K% we have

2 0 1 1 in **y ^y 1 A 1 ̂ y o t*/"I • • . • o » • • » o ^ v

, , ie W-y \\ <* ;y^ L4 r <T /^ji'ï l n c r — U / r - . f 9 V1
Is tXi^ IJ ̂ i j | _ ;̂ Is \J-\.6/<i I _̂ v C 6 AU^ IJ ijl Ij j | ^2 1 II ) \ )

KQ

so that

||*||2<Pi^||*-i||2. (2-8)

We consider l < i < j < n + l, and the fact that \\yt\\ < \\y3\\ to obtain

ll^f < Pi 4 -̂1 ll^-i f- (2-9)

Repeated apphcations of (2.9) provides

4('-0+ "+i Z l
 ( 2 _ 1 0 )

Setting i = 1 in (2.8) we find that

2 2 2 4 . (2.11)
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Finally, by combining (2.10) with (2.11), we obtain

i . s I I - , il2

• 3

3

i\

\Wt

1 = 1
(i-1)

Remark 2.2. The dérivation of (2.6) can be simplified by using the following estimate from [7]

D

(2.12)

(2.13)

The form of the estimate in (2.3) suggests that we study the summation

Applying the root test we find that

-T^-rry < -7—TT2- ""• 0, as U
/ A TL

oo,

so that the summation converges absolutely to a continuous fonction g. Note that g is increasing with £, that
g(0) = 0, and

Thus there exists a unique £ E (0,1) such that #(£) = 1. Numerical évaluation by interval bisection gives

0.5819 <l< 0.5820 . (2.14)

We now set

and rewrite (2.3) as

1 = 1

Lemma 2.3. If & < Ç then & < Ci(l + 5(6)) < 2^ Vj = 1,2,...

Proof. We proceed by induction. Assume Çj < 2£i. It follows that

1 = 1

D
We immédiately have the following.
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T h e o r e m 2 .4 . If Pl\\yi\\
2 < £ then \\yn\\

2 < 2\\yif for n = 2 , 3 , . . .

We now define

^oo = {yi e PtV : \\yx\\2 + ||zi||2 + \\z2\\
2 + . . . < 00} (2.15)

so that for each y\ G £>oo we have that

2/oo = yoo(2/i) = 2/1 + *i + 22 + • • • (2.16)

exists in V. Note that Theorem 2.4 states that if

£ "v (2i7)

then yi € X>oo and ||yoo||2 < 2||y:||
2.

Remark 2.5. Note that the condition r\ > Ri is equivalent to

(2.18)

where G is the generalized Grashof number (see for example [3]). Thus, in order for our estimâtes to guarantee
that Ai C T>oo we would need to take

where KV is Kraichnan's dissipation wave number, beyond which no mode is expected to play any role in the
dynamics of turbulent flow [3,9], The condition (2.19) is then overly restrictive as it puts «i deep into the
so-called dissipative range.

We proceed to estimate v[n* for yx G A± rïÜ?||.||(0,ri), regardless of whether (2.19) holds.

Lemma 2.6. There is a universal constant es such that

2 — 1/u-2 I

Proof. For convenience we define

We then have for all j > 1
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By (1.16) we have

C FOIAS ET AL

B(z3-lty3-i)\

h-A + c1\z3-1\
1'2\Az3-1\

1'*\A1'*y3-1\

Lemma 2.7. For oH 2/a e

Proof. Expanding the bilinear term. then applying (1.15) and (1.14) we have

v\Azx\
2 = -{B{yuyi),Azx) =

( \ 1/2
l o g - INI-

KO/

Again since the spectrum of Z\ is bounded by 2K\ , we have

which can be reexpressed as

By Lemma 2.6 we have

whence

As in (2.12) we may estimate the contribution of the z-components as

^n\yJ)-^<-%(\\zJ-i\\
2 + --- + \\zn\\

2)
VK\

v\n'(yi) < v + vpi\\yi\\2 -\ ^ö(|ki||2 4 h

. 2 = 1

Ik i l l 2

Substitution of this last bound into (2.8) complètes the proof (using C3 < C2).

D

(2.20)

(2.21)

D
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Theorem 2.8. For all yi G A{
(n)

(2.22)

Thus if H îll < r i , then i/{n)(2/i) < P°, for all n € N+.

As in the proof of Lemma 2.3, we have

Li=i

It turns out that boundedness of z/} as n -^ oo, is equivalent to that for yn as n —> oo.

Proposition 2.9. For aZZ yi zn Fiiï", ^i (yi) < oo if and only zf y oo vn (2.16) exists %n V, where

(oo)

(2.23)

D

case, ^41//2yoo «s afeo «n V.

Proof. Observe that since log(l + w) < w for all w > 0 we have

\Ayo \Ay2\
2

= 1 + 1 +
\Az2

exp

(00)

We conclude that

The converse follows immediately from Lemma 2.6. D
Thus far the crudest estimate seems to have been made in passing from (2.8) to (2.9) where we replaced

Ilytil by \\y3\\ for % < j . This led to the constant £ which determined r\. Since as explained in Remark 2.5, the
value of ri and hence £ is critical to our analysis, we now compare the estimate made above using (2.9) to one
obtained using a nonlinear différence relation for rj3 and Ç3 where \\y3\\

2 < r}3 and \z31|2 < Q> for j — 1 ,2 ,3 , . . . ,
which is obtained without using that replacement referred to above. We may take rji — \\yi\\ as given, and since

we may also take £o = Vi- According to (2.8), valid bounds are generated by the recursion relations

C, =Pie3ri3C3-l , (2.24)

j- i i 3 > (2.25)

where e3 = j/4? 1. Eliminating 77 terms we find that

-=T]3 =7fc_i + < , _ ! = - l
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which may be reexpressed as a nonlinear différence scheme with 2 steps

and finally as a System

Let Cj — Pi^j+iCj) s o t h a t

Ci ( P ^ C ) 2 = C
si

and
2

Pl£j+2 + "

\

The system is now rewritten as

— I
\p\e3+2J \

where ë3 = ^+3/^+2 = (j + 3)/(4j -f 8).
Note that if for some j , we have CJ+i > 4, then

(2.28)

Co = PiÜ2/iii2 , Ci - | C 5 , (2-29)

In particular if

Pi | |yi | |2>2v /2 Î then Ci > 4, (2.30)

and consequently the nonlinear différence équation estimate for \\z3\\
2, blows up as

47
C n > — -

PU

Comparing (2.30) to (2.17), we conclude that further study of the nonlinear différence relation could only yield
a slightly more relaxed condition than that in (2.22).
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3. EFFECTIVE VISCOSITY

Integrating

under the assumption that the initial transient occurred at some far distant past (or equivalently, that we are
on the global attractor, Ai, of the differential équation controlling 7/1), then

||yi||
2 < l/l2 f exp \-4 ft4n)(y1(r))dr\ -*±-

ds))

It is convenient to define a time averaged effective viscosity, z/eff(yi),

—^ = sup i - j f - ^ . (3.1)

Note that we have

^<^<^n)- (3-2)

We also have the following upper bound on v$.

Theorem 3.1. /ƒ

(3.3)

then

]L Vyie^i, (3.4)
KO

/ j

where G is as defined in (2.18), and c2 as in (2-4)-

It is significant that the condition in (3.3) is consistent (up to a logarithm) with that of the Kraichnan
wavelength G1/3 ~ K^/KO, where KV is as in Remark 2.5. The proof of Theorem 3.1 requires the following
estimate for the global attractor. For simplicity, throughout the remainder of this section, we will drop the
explicit référence to the number of itérations, n, when referring to Ai, v\% and i/eff

Lemma 3.2. For all y\ e Ai, we have

llwill <

Proof. Observing that

2

z/2

/ i f° y / i f° dr \ /1 r° \ i /1 r° \
\\s\ Js ) \\s\Js l/l(yi(r)) / \\s\Js ) z/eff(yi) \ l s l Js )

and integrating by parts (twice), we estimate y\ G A\ by
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< l/l2 f
J-o "l U/l 00)

ds =

D
o/ Theorem 3.1 Suppose that (3.4) fails to hold for some y± G Ai. Then for this particular yi we have

• ^eff(yi) L V \K°

By Lemma 3.2, Theorem 2.8, and (3.2), we have that

? 1 / 2 «

(3.5)

Substituting (3.5) into the last estimate, and rearranging, we arrive at

2

f'2

So for x = Ki/'KQ > e we have that

X3

KO

log 37
É

and consequently that

which contradicts (3.3). D
We are now also in a position to prove the following bound for zveff, which will be used later to obtain some

supplemental statistical information on v\

Theorem 3.3. For all y1 G Ai

where

7 = max < c G ^ log ^ 1 > C G 3 / 3 f f ^ J o g ^
K K \ « / ^
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Proof. We have either

M ^ ) 1 / 2 ^ o 1 «i ( 3 6 )
K\ Ko

or

1/ Kl Ko

In the case of (3.7), we have by Lemma 3.2 that

(3.7)

Lemma 2.3 now gives ||yn+i||2 < 2||?/i||2, and we may apply Theorm 2.8 to obtain

1

Thus if we set £ = ^«^0 then we have

or equivalently

D
We now have the following statistical estimate on v\.

Theorem 3.4. For any invariant probabilüy measure \x on Ai, one has

where 7 Z5 a5 in Theorem 3.3.

In other words the probability that v\{yi) < 2i/max{cG^a,cG2/3} (with a logarithmic correction) is > I/27
regardless of the stationary statistical distribution describing the permanent turbulent behavior of the reduced
équation (1.9).

Proof. The function l/i>eff(yi) 1S the maximal ergodic function associated to l/i/eff(yi))ï and consequently we
can apply the maximal ergodic theorem. Specifically in the notation used in [2], Chapter VIII. 7.6, page 690, we
take Ttf(yi) ~ /(yi(~*))» where y\ is the solution of (1.9) such that yi(0) = y?, y? G -4i and ƒ is an arbitrary
element in I/1(/x) (not the body force as in (1.1)). to obtain for a > 0

^
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where
e*(2a) = {yx G Au T—T > 2a} = {Vl G Au Ves(Vi) < ^"}

and
e(a) = {y± G A : , , > a} = {t/i G Ai: ^i(t/i) < - } .

Let

Then by Theorem 3.3 we have that e*(2a) = A\y which complètes the proof. D

4. LOCAL ESTIMÂTES

The main resuit of this section establishes that î>oo in (2.15) is an open set. In particular we will estimate
for each y^ G Poe, the radius of a bail in V, centered at yj, which lies within U^. The smallness of this radius
will effectively block our subséquent efforts in Section 5 to prove that the limiting System as n —+ oo is locally
Lipschitz, thereby allowing for nonuniqueness of solutions.

We have from (2.8) that

I N I 2 ^ ! ^ ! ! 2 ! ^ - ! ! ! 2 , j = 2,3,... (4.1)

for p, e satisfying

In fact, we may take e = 1/3 and
P ~ Pl 2<j

Lemma 4.1. For t/oo = y\ + z\ + z<i + • • •, twe /iave i/ïat

Jls/ooll2 = Hî/ill2 + I N I 2 + M 2 + • • • < oo (4.2)

if and oniy if ihere exisis UQ Ç N+ such ihai

\\ynJ
2Vp^<l (4.3)

and

(1 + ^/pen°)y/ë < 1 . (4.4)

Proof. If (4.2) holds, then
||yn||2<||yoo||2<oo, VnGN+,

and consequently we have that as n —> oo

* -» 0 and (1 + x / p F ) ^ -^ y/ï < 1

from which (4.3) and (4.4) follow immediately.
To prove the converse, we first use (4.1) to write
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so that by (4.3) we have

Applying (4.4) we find that

369

(4-5)

< ||t/nof(l

that is, (4.3) holds with n0 replaced by UQ + 1, as does (4.5) and (trivially) the condition (4.4). Repeatedly
applying (4.5) we find that for all n > no

< \ \ y n o f ( l + y/pê**) • • • ( 1

n-1

\J=no

so that

n - 1

< ||ynol|2exP(Vp , V u > u o (4.6)

The convergence of the geometrie series complètes the proof.
We will need the estimate in (4.6) in the more gênerai setting of the following.

Lemma 4.2. /ƒ ||2/oo(ï/i)|| < oo then

||2/oo(t/i)||2 < |bni(y)||2(l + Vp^)(l

where UQ saüsfies (4,3) and (4.4)7 <w>d moreover

> n0,

\\zn\\ <-

where n^ > UQ saüsfies

D

(4.7)

(4.8)

(4.9)

Proof. In the proof of Lemma 4.1 we saw that if ||yoo(yi)|| < co, then (4.3) holds with n0 replaced by n\ for all
^1 > ^o- It follows that (4.6) holds with UQ replaced by m, which is precisely (4.8).

Prom (4.1) we have, since \\yn\\ < ||yoo||,

Repeating this estimate, we find that for all n >

Now (4.8) follows from \\znj\ < \\yoo\\. D
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Theorem 4.3. /ƒ ||yoo(2/i)|| < oo7 for some Y^ G P\H, then there exists r > 0 such that

\\Voo(yi)\\ < 2||yoo(y?)|| , Vyx e Bul(y^r) .

Proof By Lemma 4.1 there exists n0 = ^o(||2/oo(ï/i)|| such that both

(4.10)

(4.11)

and (4.4) hold. Since yno is a polynomial in yi, it is continuous, and so there exists r = r(no) > 0 such that

\\yno{yi)\\2 < (4.12)

Prom (4.11) we then have that (4.3) holds for all yi e B\\ || (yï,r). Applying now the converse in Lemma 4.1 we
| | ( ) |2obtain < °o ^nd moreover from Lemma 4.2

Taking n\ large enough so that

complètes the proof.

Remark 4.4. Thanks to (4.10) we may find noo for which (4.9) holds for all

D

5. DIFFERENTIABILITY OF y^ AND ^OO)

We will establish the local Lipschitz property for the limiting system at n —• oo on the set Poo, by proving
that on that set the stronger property of differentiability holds.

T h e o r e m 5 . 1 . For each y ° € V^, the Frechet derivatives of both yoo(yi) ond vi* with respect to y \ exist

throughout B\\ \\(y®,r), where r ts as %n Theorem 4-3.

Proof For each j G N + let

be the Frechet derivative of y3 = y3{y\) evaluated at ylt By (1.11) we have

ï/n+i*i = v'Ji ~ (^r'QniBiy^y^) + B(y;<5i,2/n)], V«i G PXH.

As in the dérivation of (2.7) we bound the bilinear terms as

WSif = yjif + \\^A)-1Qn[B(yn,t/nS1)+B(y'nö1,yn)}\\2

|2/n||2||j,;«ï1||2 (5.1)
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Thanks to Theorem 4.3 we may choose ri2 > n^ such that
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< \\yoo(yi)\\ <

Continuing the estimât e for ||yn+i^ill2) w e n a v e

\\y'n+M\2 <\\y'Ji\\2{i
oo

II

By the convergence of the last geometrie series, we have that \\yf
n\\ is bounded, independently of n. Since

3 = 1

it follows that {yf
n}^=1 is convergent, uniformly so on B||.||(yJ,r) thanks to the fact that n^ is independent of

y\, By a well-known result from classical analysis, which extends to the Prechet case, the uniform convergence
of {yn}%Li> together with the convergence of {yn}^=l at say T/?, implies that yf

n -> (y^)' on B\\.\\(y^r).
We now turn to the differentiability of z/f°. We proceed by, estimating the derivative of each term in the

summation with

dVl

2(Azn,

\Ayn

< 2
\ \Ayn

\Azn\
2 2(Ayn, (Ay'n)5x)

\Ayn\
2

2\Azn\
2

\Ayn\*
1/2

where we used the Cauchy-Schwarz inequality in

+ a2b2\ < {(af + al)(b\ +

with

ax =
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Continuing the estimât e, we have by (4.8) that

- | l ï / n + l l | l \V«orJ P + ƒ
2 6 " + 1 / t f (~-n3o)(~-»OQ-l) ™=o

w e 4 "2

Thus

is bounded in each component by a geometrie series which is convergent, uniformly so, thanks to Remark 4.4.
Now a similar argument to that for y^ shows that (&4 )' —> (v[ Y on B^.^y^ r). Due to uniform convergence,
both y^ and (z^00^)' are continuous.

D

Remark 5.2. In fact if yi E Poo, | |^i | | = 1 and 5 > 0 is small enough, then

2fa = (2/oo(2/i +sw1),y'oo(yi + swi)wi) < \\yoo(yi

whence

Using (5.1), we can easily obtain a differential inequality for ||yoo(yi + s^i)|| from which it follows that
||2/oo(2/i + swi)|| < 00 as long as

where C4, C5 are absolute constants > 0.

6. LlMITING BEHAVIOR

According to the mathematicians this series is divergent; therefore we may be able to do something useful
with it.

-O. Heaviside [13]

Our analysis up to this point would suggest that the itération presented earlier introduces no anomalies as
it is continued to infinity. In fact we are not quite able to conclude this. As we demons t rate her e there is
a possibility of pathological behavior, such as yf° becoming discontinuous with respect to time, while the
iterated viscosity u[°°^ becomes momentarily infinité. The reason is that we are unable to show that yn(yi),
and Vi (yi) are bounded independent of n, for all y± G P\H. Nevertheless, we are still able to make sense of
the limiting dynamical system on all of P\H as n —» 00. This is done by replacing the time parametrization by
arclength parametrization. To do so, we first must isolate the steady states.
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We multiply the steady state équation for (1.9)
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by At/i, integrate, and apply (1.7) to obtain

iy[n)\Ayl\
2 = (fJAy1)< \f\\AVl\

so that

\Ayi\< l/l

and hence

where Ri is as in (2.2). Let v0 — R\v/r\ with r\ as in (2.17). If v0 < u[n\ then

and by Corollary 2.8 we have

where VQ is as in (2.22).
It follows that at any steady state y^1

\\vi\\ <Ri— =

(n) . _

(n) (n) / (n)\

= ^ (V )

Let
On(a) = {yi G Pii/ : 112/xll < R1 , ^ n ) > amax(ï/0,F0)} .

Note that for all a > 1, ön(a;) does not contain any steady states of (1.9) and lies within the annulus

D = {yi ePiH:n < \\yi\\ <RX} .

We now consider two séquences of differential équations, both of which are equivalent to (1.9) on overlapping
domains

^2/i = Fn(Vl) = ƒ - Bx{yx) - u[n)AVl , y 6 P,H\On(2an) (6.1)

(6.2)

where Yi(s) = yi(t(s))^ and a*, {o;n} are to be determined.
We rewrite the first component of Gn as

Fn{Yl) 1
\\AY1 + ^[B^Y,) - f}\\ - ƒ]
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By the compactness of D (the closure of D), there exists a* > 1 such that

\\Fn(Yi)\\>l, for aUH G On(a*),

and moreover there exists {an} such that

an > a* and ||i5n(Yi)|| < 1/n, for ail Yi G On(an).

Let 5 dénote the (potentially empty) set in D where the iterated viscosity grows without bound, i.e.

S = {yi G Pi H: lim z4 (yi) = 00} .

We write the limiting system as

_, 00

-£=f-B1(y1)-V£x>)Ay1, Vx S PxH\ f) On(2an) (6.3)
n=l

and

* (6.4)

Multiplying (6.3) by Ayi, the first component in (6.4) by AYi, and proceeding as for (2.1) we find that the bail
of radius Ri is absorbing for the limiting System. We define the global at tract or A{° of the limiting system
as consisting of ail solutions (just the first component, in the case of (6.4) which exist and are bounded for ail
teR.

Since the Frechet derivative of Fn is continuons, Fn is locally Lipschitz throughout P\H for ail n G N+. On
the other hand, even though i^ *s continuously differentiable wherever it is bounded, the most we can say
about the vector field for the limiting system (6.3, 6.4) is that it is locally Lipschitz everywhere except at the
boundary of the singular set S. If we could improve the estimât e sketched in Remark 5.2, this exception could
be overcome.

By the continuons dependence of the solution of an ordinary differential équation on its vector field, we
have that any séquence of intégral curves of (6.1, 6.2) contains a subsequence which converges to an intégral
curve of (6.3, 6.4). On the boundary of S however, we may lose uniqueness of solutions, backward in time at
a point of entry int o <S, and forward in time at a point of exit from <S, as depicted in the figure below. The
interprétation of any limiting intégral curve passing through <S, is that t is constant over any connected portion
of that trajectory which lies within S.

Summing up this analysis we can state the following

Theorem 6-1. The limiting system (6.3, 6.4) générâtes a dynamical system in the usual sense, except that for
orbits passing through S, the solution may be multiply defined, m the past as it enters, and in the future as it
extts S. Moreover, time is constant along a portion of any orbü entirely within S, and for each orbü, the total
time spent m S is of Lebesgue measure zero. Fmally, for any open neighborhood J\f of Ai , there exists n^f
such that Ai C Af for all n > rijs/.

Remark 6.2. For the system (6.3, 6.4) we can define z/Jg in a similar way to (3.1). Indeed if £(T/I) dénotes the
set of all solutions (Yi(s),*(s)) of (6.4) such that YI(s) G A^ for all s e l , and Yi(0) = yi, then

dt

F(j/lJ (Yi( ),£( ))€S(yi) - O G < S « 3 \S
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FIGURE l. Possible behavior for limiting dynamical system.

makes sense. Then the analogue of Lemma 3.2 is still valid, that is

n\\ <

In Remark 2.5 we observed that for large enough «i, the singular set S is empty. Under a similar assumption,
we sketch in a final remark below how we can estimate the différence between solutions of the iterated system
and the Navier-Stokes équations.

Remark 6.3. First note that if

hence

and ï>{ defined in (1.13) satisfies

1 then on the absorbing bail i%||(0, Ri) we have

(6.5)

= Hï/o

(6.6)

Indeed for (6.5), one need only choose £e so that g(£e) = e, and use Lemma 2.3, while for (6.6) one may use
(2.20) and notice that



376 C. FOIAS ET AL.

A simple rearrangement of (1.12) gives

^ + uAVl + Pi[B{yi) + B'{yi)Zl] = ƒ - (û[n\Vl) - v)AVl ,

and therefore for n\ large enough, the solutions of (1.9) will stay near the solutions of

^ + vAyx + P1[B{y1) + B'(y1)z1] = f , (6.7)

over finite time intervals. We complete the remark by recalling that was shown in [4] that for large enough K\,
solutions of (6.7) stay near those of the Navier-Stokes équations over finite time intervals.
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