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COMPUTATION OF BIFURCATED BRANCHES IN A FREE BOUNDARY
PROBLEM ARISING IN COMBUSTION THEORY*

OLIVIER BACONNEAU1, CLAUDE-MICHEL BRAUNER1 AND ALESSANDRA LUNARDI2

Abstract. We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface.
lts planar travelling-wave solutions are orbitally stable provided the bifurcation parameter u* does not
exceed a critical value u*. The latter is the limit of a decreasing séquence (tij) of bifurcation points.
The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our
technique is based on the élimination of the unknown front, turning the problem into a fully nonlinear
one, to which we can apply the Crandall-Rabinowitz bifurcation theorem for a local study. We point
out that the fully nonlinear reformulation of the FBP can also serve to develop efficient numerical
schemes in view of global information, such as techniques based on are lengt h continuation.

Resumé. On s'intéresse à un problème à frontière libre bidimensionnel, avec conditions de saut à
l'interface. Le problème parabolique admet comme solutions des ondes progressives planes, qui sont
orbitalement stables si le paramètre u* ne dépasse pas la valeur u%. Ce point critique est la limite d'une
suite décroissante de points de bifurcation (it*). Dans cet article, on étudie la structure des branches
bifurquées 2D à partir de la branche triviale formée des ondes planes, pour k petit. Notre technique
consiste à éliminer le front inconnu, pour se ramener à un problème totalement non linéaire équivalent,
auquel on applique le théorème de bifurcation de Crandall-Rabinowitz pour une étude locale. La
reformulation totalement non linéaire du problème s'avère également bien adaptée à la mise en œuvre
de méthodes numériques pour le suivi global des branches bifurquées, en particulier par continuation.
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1. INTRODUCTION

In this paper we study the bifurcated branches of travelling-wave solutions to the par abolie two-dimensional
Pree Boundary Problem,

ut(t)Z7y) = Au(t7 z,y) -h u{t,z7y)uz{t^z,y), £ > 0, z ^ £(£,y), y G [—1,1],

u(t,£(t,y),y)=u. >0 , [du/dv](t,Ç(t,y),y) = - 1 , i > 0, y € [-1,1],

= 0, £ >0 , y = ±1, (1.1)

»*(£, z, y) = 0, t > 0 , ^ £(*, y), y = ±1,

u(£,-oo,y) = 0, u(t,+oo,y) = Tioo > 0, £ > 0, y G [-1,1],

where the unknowns are the interface £ = £(£, y) and the (normalized) température u = u(£, z,y). By [ƒ]((") we
mean ƒ (C+) — ƒ (C~) a t a point of possible discontinuity £.

Problem (1.1) arises as a multidimensional version of a System introduced by Stewart and Ludford [10] as
a tentative model to describe the transition from a low speed combustion wave (déflagration) to a high speed
combustion wave (détonation). Although this model has been ruled out as an accurate model of the physical
situation, since then it has received constant attention because of its very unusual features as a Free Boundary
Problem (see the survey [11]).

By travelling-wave solutions of (1.1) we mean solutions such that £(£, y) = — et + s(y), u(t,z^y) = U(z + ct,y)
for some ceR and U : R x [— 1,1] —• R. Replacing z by z + ei, the tripiet (c, 5, U) must satisfy

cUz(z,y) = AU(z,y) + U(z,y)Ux{z,y), z ^ s(y), y e [-1,1],

ü r ( s (y) ,y) = u*, [3tVöi/](5(y),y) = - l , ï / e [ - l , l ] ,

^ JU -f— ö\ U J « I 1.Z1

€[-1,1] .l7(-oo,y) = 0,

It is easy to see that for certain values of the parameters [10] (precisely, for Uoo > -\/2, 2/UQO < u* < 2/u00-\-u00)
problem (1.2) has a one-dimensional or "planar" travelling-wave solution, unique up to translations, with c =
c0 = Uco/2 4- l/uoo independent of w+, s = 0. and where U(z, y) = U0(z) vérifies:

(1.3)= - 1 ,

-OO) = 0, t/o(+00) = Uoo,

whose solution is explicit. We dénote this one-dimensional solution by the tripiet (co,0,C/o). Numerically, we
take hereafter Uoo — 2, hence CQ = 3/2.

The stability of such planar travelling-wave has been studied in [6]: it is orbitally stable iff the bifurcation
parameter u* does not exceed a critical value u%. In [3], u% has been shown to be the limit of a decreasing
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séquence {u^)keN* such that, for k large enough, u\ is a bifurcation point of a branch of nonplanar (ie.,
genuinely two-dimensional) travelling-wave solutions to (1.1), see Figure 1.

The proof in [3] is based on the élimination of the front s by an appropriate splitting of U, namely U =
Uo + SUQ +W. The problem for w turns out to be fully nonlinear (see Sect. 2). The points u^ are characterized
as those values of u* at which the kernel of the linearized operator L acting on w is two-dimensional.

In contrast to [3], the paper deals with the two-dimensional bifurcated branches from the planar branch
(co, 0, Uo) for the small values of k. Our proofs rely on numerics. First, we prove that u^ is a bifurcation point
by checking numerically the transversality condition. Then we study the shape of the bifurcated branches near
u^ and show that they occur for u* in a right neighborhood of IA*, for k small. Each two-dimensional branch
(c, 5, U) is parametrized by

u* = u^ + /i(cr), c = c(a), s — s(a), U = U(a), -ök < a < ök,

(—5fc, àk) being a small neighborhood of 0, and /x(0) = 0, c(0) = Co, 5(0) = 0, U(Ö) — Uo- While it is not hard
to see that /x(0) = dfi/da(0) = 0, the computation of jï(0) is more difficult, and needs numerical treatment.

As usual, the information provided by the classical Crandall-Rabinowitz bifurcation theorem are only local.
Global informations about the behaviour of bifurcated branches can be obtained by numerical methods, such
as techniques based on arc length continuation [8].

Our aim is to point out that the idea of a fully nonlinear reformulation used in the theoretical proofs, via the
élimination of the front 5, can also serve to develop new numerical schemes for Free Boundary Problems. The
price to pay (as in the continuous problem) is that the discretized System contains approximations of second
order derivatives. In Section 4 we show how to handle the method practically, especially the question of the
linear algebra. The method has appeared to be quite efficient in the computation of the first two-dimensional
bifurcated branches.

2. EXISTENCE OF THE BIFURCATED BRANCHES

Problem (1.2) is studied fixing the free boundary by the change of coordinate

x = z - s(y)

and eliminating the unknown s by the splitting

U(x, y) = Uo(x) + s(y)Ufa) + w(x, y), (2.1)

i.e. introducing the new unknown w. The boundary conditions give then

s(y) - [w(0,y)],

where by [/(0,y)] — /(0+ ,y) — /(0~,y) we indicate from now on the jump at x = 0. Substituting into (1.2),
one gets the fully nonlinear problem for (c, w),

x^0, y G [-1,1],

[-1,1],

, w(-oo,y) =w(+oo,y) = 0, y e [-1,1],
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with

-^{Uo{x)v{x,y)), x ± 0, y e [-1,1], (2.3)

, » e [ - l , l ] , (2.4)

» €[-1,1], (2.5)

and

r(v)(x,y) = (dy[v(0,y)m-U{;(x) + [v(0,y)}U^"(x) + vxx) + \ £(v + [v]U(>(x))2

(2.6)
-2vxy(x,y)dy[v{O,y)}-dyy[v(O,y)\([v(O,y)}U(;{x)+vx(x,y)),

G(v)(y) = 1 - (1 + (0w[t/(O,y)])2)"1'2. (2.7)

The trivial branch of problem (1.2), that is f c = c0, s(y) = 0, U(z,y) = Uo(z)j, is transformée! into the trivial
branch for (2.2)

(c = co,w = 0).
To state the bifurcation theorem, we need some preliminaries about the spectrum of the realization of L in
suitable functional spaces. The functional spaces where the problem is set are, as usual, weighted Hölder
spaces [9]; if 0 < a < 1, then

Xa - {weL™(Rx[-l,l}): (x,y)^q-(x)w(xjy)eC<*(R-x[-l,l}),

(x,y) » q+{x)w{x,y) G C*(M+ x [-1,1])},

with q~(x) = e~CQX/2, q^(x) — e(
uoo/2-i/u<Xi)x/2^ m WJ1ÏCJ1 ^he realization of the operator £, with homogeneous

boundary conditions, has good spectral properties. Together with the space Xa we shall use also the spaces
Xk+a, with fcGN, defined similarly, as is Ca replaced by Ck+a.

The realization of C in Xa is the operator L defined by

D{L) = {wG X2+Q , Bw = Cw = 0a,tx = 0, dw/dy = 0 at R x {-1,1}},

L : D{L) ^ Xa, Lw = £w.
lts spectrum is given by [6]

a(L) = {A = Ai + A2 : Ai G au A2 € a2},
where

ai = {-&V/4 : feêN}
is the spectrum of the second-order dérivâtive (acting on the variable y) with Neumann boundary condition at
y = ±1, and

a2 = (-00, -cg/4 + 1/2] U {0} U {Â}
is the spectrum of the operator (acting on the variable x) v »—» uxx — cof̂  + d/dx(Uov) in X a , with boundary
conditions i3i?(0, y) = Cv(0, y) = 0. Note that — CQ/4 + 1/2 < 0. When it exists, A is a real eigenvalue depending
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on u*. The following properties hold:

(a) if 2/t/oo < u* < UQ} X < 0;
(b) if UQ < u* < uj , À does not exist;
(c) if u% < u* < Uoo + 2/tioo = 2c0, Â > 0,

wheretio = co-y - 1 — v2cg — 3 and u% — CQ + \/CQ — 1. Moreover, l i m ^ ^ c A = +oo,

and the function u* \—> \(u*) is decreasing on the interval (U^UQQ + 2/UQQ).

For each k G N*, define tij as the (unique) value of u* such that (see Fig. 1)

= 0,

(2.8)

(fcTT/2)

«; uî ui 2co

FiGURE 1. The figure shows the decreasing curve of the eigenvalue A versus the bifurcation
parameter u*. On the vertical axis, we put the (kir)2/'4 which define, by intersection with
the decreasing curve, the values of the séquence of bifurcation points u^y accumulating at
< . Numerically, with Uoo = 2, c0 = 3/2, we find u\ ~ 2.758 > v2 ~ 2.6936 > ui ~
2.6694 > u* ~ 2.6569 > ... > u% ~ 2.6182.

Then [3], at u* = u j , 0 is a semisimple eigenvalue of L, and the kernel of L is two-dimensional. The values
u* = wj are the natural candidates to be bifurcation points of branches of nonplanar solutions to (1.2).

Theorem 2.1. Fix a G (0, 1). For each small k e N*, there exist 5k > 0 and three regular functions,

Mfc : (—^fcï^fc) »—̂  ̂ J cfc : (—5fe,5fe) i-> R , tOfc : (—ök iök) >-

swcA iftot /zjfĉ O) = 0, Cfc(ö) = co, Wfe(0) = 0, and for each a e (-6k,Sk), the couple (ck(a),Wk{<r)) is a solution
of (2.2) for u* = u* + /Xfc(a). Moreover Wk{o-) ̂  0 an<i Cfc(cr) > Co /or a ^ 0.

The couple (cfc(cr), lyjt(a)) is t/ie unique nontrivial solution of (2.2) for u* = tij +/ifc(a) near t/ie planar trivial
branch (c = CQ, IÜ = Öj.
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Proof. We recall her e the parts of the pro of of [3, theorem 2.7] which will be used in the sequel.

We introducé the following notation: if Y is any Banach space of functions defined m [—1,1] or in M x [—Ijl],
we define YQV to be the subset of Y consistmg of those functions whose dérivât ive w r.t. y at ±1 vanishes.

Proposition 2.2. Let us consider the hnear operator

u t—> Au = (Cu^Bu^Cu).

At u* = u*, 0 is a sermsimple ezgenvalue of A, and the kernel of A is spanned by the functions $i(x, y) — UQ(X),

where

{ — sin(/c7n//2), if k is odd,
(2.9)

= cos(^7ry/2), if k is even,

dx (p(x) dx (p{x)

Pi (A) = (co + y eg + 4À)/2, p2(A) = (CÖ + Vco + 4A - 2)/2,

Z I T \
ip(x) = exp I - I U0(s)ds 1 =

\ Z JO / WoolWoo - W * ) „/„, UooW* — 2

T/ie spectral projection on the kernel is given by

Pv(x,y) = ƒ ƒ v(s,r)dsdr C/"ó(a;) + ƒ / v(s,r)(p*(s)r]k(r)d$drip(x)r]k(y)

= Piv(x, y) + P2v(x, y).

where

V*(X) = - ^ L (2.11)

T/ie range of A consists of the tnplets (f,goi9i) such that

Qi(f,9o,9i)= ~- f f f{x,y)dxdy+-ï— f 9l(y)dy = 0,
2^oo 7_i 7K 2^OO 7-1

Ö2(/,ffo^i)= / f f(x,y)<P*(x)rik(y)àxdy (2.12)
7-i 7E

fi

*7*(2/)Si(2/)dy = O.
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Theorem 2.1 is proved by a Lyapunov-Schmidt procedure, reducing first the dimension of the kernel and the
codimension of the range to 1; this is done by expressing c in terms of w,

c = co + ^{f { |3>(0,Z/)]|2(l - Cw)} dy - J i G(w) dy) (2.13)

and using the translation invariance of the problem to look for a solution w belonging to (/ — Pi)(X§ ) , The
final équation is

* W ) = (0,0,0) (2.14)

where ji = u* — u^, and

F : (ƒ - Pi)(X2
d^) x l - {(/jff0,ffi) G X ^ x c £ a x C%« : fii(/,flo,5i) = 0}

^(w, /x) = ^ + T(w) + 7i(w), BÎU, Cw - G(w)\,

W being defined by

W(t") = -TT-WÓ + [w(0,y)]U'ó + wx) f {dy[w(0,y)}\l - Cw) - G(w)}dy.
ï'U'OQ J_l

Hère the trivial branch is w — 0. The linear part L = ^ ( 0 , 0 ) = (C,B,C) has the following properties:
• 0 is a simple eigenvalue of L,
• KerZ is spanned by $2(a;,y) = <p(x)Vk(y),
• the range of L has codimension 1,
• ^^(0,0) • ̂ 2 ^ ImL iff Tfc / 0 (transversahty condition),

where

/ ê ( I H ( ( 0 ) -(co " u*)^/

For the small values of k, it is easy to compute a very accurate value of T& by solving numerically (2.15), see
Figure 2. We find that T^ is positive for k small, more precisely Tk > 39. Since the transversahty condition is
verined, it is possible to apply the Crandall-Rabinowitz Theorem [7] to obtain the statement. •

3. STUDY OF CONCAVITY

To describe the bifurcated branches near the bifurcation points, we use the expansions given by the Crandall-
Rabinowitz Theorem:

2
wk{a) = tüfc(0) + atüfc(O) + yWfc(O) + H.O.T., (3.1)

2

A**(ff) = M*(0) + <TMfc(0) + yA**(0) + H.O.T., (3.2)

where a G {—Sk^ôk)- The dot " " indicates the derivative with respect to a. To simplify notation we do not
mention explicitly the dependence of w on x and y.

The concavity of each branch dépends on the first nonvanishing term in the expansion of jj,k •
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4.0e+04 i-
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2.60 2.70 2.80 2.90 3.00

FIGURE 2. Transversality condition: Tk vs. u*, k = 1,2,.

Theorem 3.1. For every k € N* we have ùk(0) = 0. For small k, we have

(3.3)

Remark 3.2. It follows immediately that the bifurcated branches are "parabolic" nearu^, and the concavity of
the first ones is towards the right hand side, so that they occur for u* > u^.

Proof. Of course to prove Theorem 3.1, we have to differentiate several times with respect to a the iden-
tity (2.14), namely

- 0, a € ( - 4 , 6k). (3.4)

We warn the reader that several expressions below are triplets: the first component is defined on the domain
M* x [—1,1], the two others are defined on the interface {0} x [—1,1]. This is very natural in view of the structure
of the problem involving the operator C and the boundary operators B and C. For simplicity, the index k will
be skipped.

Differentiating (3.4) once at a = 0 does not provide any further information, since we already know that
w(0) = 0, lü(O) = $2, M(0) = 0. Differentiating it twice, we get at er = 0

, w(0))w(0)(i(0) + Fw - -Fw , ™(0))t5(0), (3.5)
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so the left-hand side of (3.5) is in the range of Fw(fi(0)^w(0)). Using its characterization in terms of Q2 we get

A ( O ) = — 2 ^ 7 - ' — - \ - • (3-6)
2Q2I ^^(0 ,0) • $2 )

The denominator of the fraction is nothing but 2Tfc (see (2.15)), and it does not vanish. Moreover,

2($2 + 1*2(0,2/)]üó(x,uJ)) (dx$2 + [^2(05y)]t/ó'(x,^

(3.7)

-2A[* 2 (0 , y)] ([$2(0, y)]U'ó (x, uk
t) + dx<t>2)

_Uo^Ml f1
 dy[M0y)]2 dyt ^ c y e i

o, y e [-1,1],

[ -a„[*2(0, y)]2, y 6 [-1,1].

Substituting into (3.6) and computing the intégrais in the définition of Q2, we get

A(0) = 0.

Differentiating once again (3.4) at a — 0 yields

Fwww(0,0) • ( $ 2 ) $ 2 , * 2 ) + 3FWW(0,0) • (*
(3.8)

Since the left-hand side of (3.8) is in the range of ^,(0,0) we obtain a final formula for /i(0):

02 (FV,WW{0, 0) • (*2, $2, *2)) 02 ( F ^ ( 0 , 0) • ($2, tS(O))
(3.9)

The two addenda in the expression for jl(0) give different difficulties. We will compute the summands numeri-
cally which obviously restricts our proof to the small values of k.

(i) As far as the first one is concerned, Q2[Fwww(0,0) • (<È>2, $2, $2) ) rnay be expressed as an intégral of a known
function over R. After tedious computations,

0, y)]2 d x<f>2)( )

([*2(0,y)]ui' +ôx$2) f dy[$2(0,y)}2 dy,
J-i

(3.10)

0, y e [-1,1],

[ 0, y e [-1,1].
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Applying Q2 to (3.10), we find explicitly that

3PTT2

- Pi - P2)2 ƒ (ttf (co " Pi ~ V2) + ^

2^23fc27T

8
- Pi - P2) ƒ (^ 3 ) (c 0 - Pi - P2) + y>")v>*ds, (3.11)

which can be computed numerically with high accuracy.
{%%) The second summand is more complicated because w(fi) is not explicitly known, and one has to compute it
by a suitable numerical method. We first return to formula (3.5) to obtain a System for u?(0), namely

Fw(iJL(fy,w(Ü))w{0) = -Fww(/j,(0),w(0)) (w (0),XÜ(0)). (3.12)

The operator Fw(fj,(0), w(0)) is nothing but the tripiet (£, B,C), therefore (3.12) can be easily solved by a finite-
difference scheme. Next, one computes numerically the 3 components of Fww (0,0)($2)^(0)), by (writing r for
tü(O)):

2dy{$2(O,y)]dy{r(O,y)](-U'i;(x,u1)) -

-2dxyr dy[92(0,y)] - Ar

dy[r{0,y)\

-A[*2(0,ï/)]

dy[r(0,y)]dy

x ^ O , y G [-1,1],

0, y e [-1,1],

~öy[$2(0)2/)] ^y[r(o?y)]) y ^ [—ï, ï].

Finally Ö2(^u;ti;(0,0)($2,^(0)) may be approximated by a numerical 2D intégration. Summing up, we are
able to compute numerically /i'fe(0), at least for small values of k, see Figure 3 below. In fact, we find an
increasing séquence of values, starting at 5.94 for k — 1. D

4. NUMERICAL APPROXIMATION

This section, dedicated to the numerics, is divided into three subsections: the first one deals with the nu-
merical approximation of problem (2.2) for w. In the second one we take the continuation into account, and we
introducé a relevant ordering of both unknowns and équations. Finally, numerical results are presented in the
third part.
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233
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FIGURE 3. Computed values of /ijfe(O) vs. u£, k = 1,..., 6.

4.1. A numerical scheme for the tu-problem

Several difficultés have to be taken into account: although U is continuous at the origin, w is not because
of the splitting (2.1), which requires w(0+,y) and w(0~, y) to be defined separately. The problem is set on an
unbounded domain, and it contains nonlocal terms. The fully nonlinear nature of the problem leads to complex
discrete formulae, most of them being skipped hereafter (see [1] for details). A further simplification of (2.2)
is that, for large £, the influence of the front is rather weak, therefore derivatives w.r.t. y may be negiected
between ±oo and ±Xmax . The latter can be rigorously established as in [2], where a mollifier is introduced in
the splitting defining w. This enables us to dérive boundary conditions at an "artificial boundary" F ± M , see
below (4.2).
Let Xmax > 0. From now on we will work on the bounded domain [—Xmax,Xmax\ x [—1,1], on which prob-
lem (2.2) reads:

(c - c0) (UQ + [wpö + wx^j =Cw + ^(w) , - X m a x < x < X m a x , x / 0,

Bw(0iy)=0i y e [-1,1],

C ïü -öH(y)=0 , y e [-1,1],
(4.1)

9VÏÜ(X, ±1) = 0, x^O,

a-(w(-Xmax,y)j =a+{w(Xmax,y)j = 0, y e [-1,1],
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together with

-1,1]}, r M = {(XmaXî?/), y e [-1,1]},
a_O) - (c - co)£/o - OXÏÜ - \w2 + w(c - t/o) = 0 on I\_M, (4.2)
a+(w) = (c - c0)(noo - C/o) + dxw - \w2 + w(U0 - c) = 0 on TM.

We introducé some notation. The rectangular domain R- = [—Xmax,0] x [-1,1] is discretized by a regular
mesh of (Nx + 2)(Ny + 2) points with step h. A nodal point of R- is denoted by {xl,y3)1 % — 0,..,Nx +
1? j = 0, ..^iVy + 1. The discrete values of w in i?_ are denoted by w~3. The other rectangular domain
R+ = [0,Xmax] x [—1,1] is approximated similarly, the values of w being denoted by w*3.

At the front, the left values w(0~,y3) are approximated by l3J the right values by r3, j = 0, ...,Ny + 1. This
allows us to express the discrete front as

rj-l3. (4.3)

Via a centered finite-difïerence approximation, we have at an inner point of i?+ :

= - ( c -

( - ^ + ̂  - z,) + ̂ K+
+1)J + < ! , , - 2»+))

(4.4)

- h) + 2^

where
p(j) = (rJ+1 - ZJ+1 - rj-i + Zj-O

7Ü) = (rj+i - ij+i + '"j-i - 'j-i - 2 rj + 2Zj).

A similar discrete équation is written at an inner point w~3 of R-.

An important term is (c—Co)/i which approximates (2.13). It dépends upon all the discrete unknowns between
x = — 2h and x = 2h. It also involves the approximation of the boundary operators at the interface {0} x [—1,1].
Since (c — CQ)H appears at any inner point (see (4.4)), the unknowns defining it have clearly a big impact on
the final linear system. We call them global unknowns, versus the other variables which are called local unknowns.

While it is not difficult to approximate the operators B and Q:

(6«,),=(,(£7+)i-r )(t/-)'„.+1, (4.5)

(4.6)
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an additional difBculty arises with the approximation of the linear operator C. Due to the discontinuity of
dxw(0) y)7 it is impossible to use a centered approximation. To get the same accuracy, we approximate 9XIÜ(0+ , y)
and dxw(0~~ , y) by a non-centered formula with a three points stencil. It yields the discrete formula for the
operator C at a point (0, y3), 0 < j < Ny + 1, of the interface

(Cw)} - fa + l}) + | « j +tüWxJ) ^ W t + WNx-lJ + (U* C°)(ro h)- (4-7)

Thanks to (4 5, 4.6) and (4.7), the discrete formulae at the interface are

(Bw)j = 0, 0 < j < Ny + 1, (4.8)

{Cw)3 = g(w)3, 0<j<Ny + l. (4.9)

Afterwards, we express (c — co)h as

k=Ny + l

(4.10)

h J 2h J Ah , . 0(k)
where do = dNy+1 = - , d2l = y , d2l+i = y , and fk =

As far as the boundary conditions are concerned, we use the standard technique of fictitious points to take
into account Neumann conditions at y = ±1. On the other hand, introducing the fictitious points wZi 3 &nd
^^+2^'^- - 3 - Ny + 1 at the artificial boundary T±M, the mixed boundary conditions (4.2) are approxi-
mated by:

^ — + (C - Cojfct/^ + ^ j ( ( c - Co)h + Co - U

5 ^ (c _ CoJfcCuoo - U+Nx+1 - ^ a + l ï J ( J 7 + ^ + 1 - (c - co)h - co

Moreover, the fictitious point for the front at x = 0 yields n — li = r_ i — Z_i. Note that r^ and l3 are always
coupled.

Remark 4 .1 . For % = 1 (resp. for % = Nx), the discrete formula (4-4) %n R+ (resp. R-) involves only global
unknowns.

4.2. Continuation method, final System

The final step of the discretization is to introducé the continuation constraint. We recall in a few words the
spirit of continuation techniques. Consider, to ftx ideas, the nonlinear problem ƒ (it, À) = 0. Arc length contin-
uation consists in adding a parameter a and in coupling the nonlinear équation with a normal parametnzaüon

f ƒ(«(*), A(*)) = 0,
1 N(u(o), A(<7), e) = R u i l 2 + ||ÖCTA||2 - 1 = 0. V' '

We have chosen to track bifurcated branches via a discrete continuation. We write the nonlinear system coming
from the approximation of (4 4) as
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Hère Y is the set of all the global and local unknowns, and has N = 2(7VX + 2){Ny + 2) components. Fh is the
set of all the discrete nonlinear formulae (4.4), plus the two conditions at the interface (4.8, 4.9).

We emphazise that u% is now an additional unknown of the problem, therefore we set

The discrete continuation équation for the unknown X reads

YT1 - Yn~1

) - Aa = 0, (4.12)
i—l

where n is the index of the continuation method, and Aa is the are length step. Therefore the System becomes

MX) = 0 (4.13)

where Jh takes into account Fh and the continuation équation (4.12). We solve the nonlinear problem (4.13)
by a Standard Newton method in E N + 1 .

However, the normal parametrization may lead to a full Jacobian matrix. To avoid this inconvenience, we
carefully arrange the unknowns and the équations. Another problem arises with the fill-in of the matrix during
the resolution of the linear system. To avoid this phenomenon, the idea is to work with sparse matrices having
an increasing profile. One can also take advantage of the latter properties to save memory and to reduce CPU
time by storing only the upper part of the profile and by using an adequate method of trangularization of the
matrix.

Thanks to a convenient ordering, we are able to get a bloc tridiagonal matrix. Let us give some insight:
the trick is to number the local unknowns at first. Therefore, the contributions of the global unknowns will
appear in the upper triangular part of the matrix throughout the process. In the same spirit, the first line
of the Jacobian matrix represents the continuation équation. We then order the équations coming from the
discretization of (4.1) at an inner points w~j 0 < i < Nx — 1, 0 < j < iVy -f 1 (see the remark in the previous
subsection). Next come the équations written at an inner point w^, 2 < i < Nx + 1, 0 < j < Ny + 1. Finally,
the last lincs of the matrix arc for the équations with global unknowns only. This arrangement of the équations
is really the key to get a matrix with increasing profile, see Figure 4.

4.3. Numerical results

The numerical results presented hereafter are obtained with a value of Xmax = 10. The meshes R- and R+
are defined by Nx — 199 and Ny — 39. Also, the continuation step is Aa = 5x 10~2.

We need to initialize the continuation method. X° is 0 except u* = u^. We look for the next iterate X1, at
a small, by mean of the Crandall-Rabinowitz expansion (3.1^ 3.2), up to the 2nd-order terms. This has to be
matched with the continuation équation (4.12) for n = 0, namely,

N+l

Knowing both X° and X1, we can launch the continuation process. In the sequel we present some numerical
results obtained via the above method. A nice représentation of the bifurcated branches is provided by the
évolution of the speed increase c — cç> of the non planar travelling waves. A special emphazise will be put on
the first branch, see Figures 7 to 9.

From Figure 5, we see that the bifurcated branches are unbounded, with a vertical asymptote. The corresponding
computed values of the asymptotes are graphed in the next Figure 6.
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FIGURE 4. Structure of the Jacobian matrix with: (a) continuation équation, (b) équations in
i2_, (c) équations in R+, (d) équations with global unknowns only and équations for (C)3, (e)
équations for (B)3. Note the increasing profile of this sparse matrix.
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0.0000
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FIGURE 5. Bifurcation diagram for the first 2D branches, k = 1,..., 5.
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FIGURE 6. Computed values of the vertical asymptote vs. u£, k = 1,..., 5.
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-0.05 0.05 0.15

FIGURE 7'. Profile of the front s(y) for different values of u* on the first bifurcated branch.
Note the symmetry breaking in the direction y > 0.
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-0.04
-10'

FIGURE 8. Profile of w for x < 0 on the flrst bifurcated branch.

FIGURE 9. Profile of w for x > 0 on the first bifurcated branch.
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