@article{M2AN_2000__34_2_201_0, author = {Babin, Anatoli and Mahalov, Alex and Nicolaenko, Basil}, title = {Fast singular oscillating limits and global regularity for the {3D} primitive equations of geophysics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {201--222}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1765657}, zbl = {0962.76020}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_2_201_0/} }
TY - JOUR AU - Babin, Anatoli AU - Mahalov, Alex AU - Nicolaenko, Basil TI - Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 201 EP - 222 VL - 34 IS - 2 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_2_201_0/ LA - en ID - M2AN_2000__34_2_201_0 ER -
%0 Journal Article %A Babin, Anatoli %A Mahalov, Alex %A Nicolaenko, Basil %T Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 201-222 %V 34 %N 2 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_2_201_0/ %G en %F M2AN_2000__34_2_201_0
Babin, Anatoli; Mahalov, Alex; Nicolaenko, Basil. Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics. ESAIM: Modélisation mathématique et analyse numérique, Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 201-222. http://www.numdam.org/item/M2AN_2000__34_2_201_0/
[1] Small denominators. I. Mappings of the circumference onto itself. Amer. Math. Soc. Transl. Ser. 2 46 (1965)213-284. | Zbl
,[2] Topological Methods in Hydrodynamics. Appl. Math. Sci. 125 (1997). | MR | Zbl
and ,[3] On regularity of solutions of 3D Navier-Stokes equations. Appl. Anal. 71 (1999) 197-214. | MR | Zbl
, , and ,[4] Long-time averaged Euler and Navier-Stokes equations for rotating fluids, In Structure and Dynamics of Nonlinear Waves in Fluids, 1994 IUTAM Conference, K. Kirchgässner and A. Mielke Eds, World Scientific (1995) 145-157. | MR | Zbl
, and ,[5] Global splitting, integrability and regularity of 3D Euler and Navier Stokes equations for uniformly rotating fluids. Europ. J. Mech. B/Fluids 15, No. 3, (1996) 291-300. | MR | Zbl
, and ,[6] Resonances and regularîty for Boussinesq equations. Russian J. Math. Phys. 4, No. 4, (1996) 417-428. | MR | Zbl
, and ,[7] Regularity and integrability of rotating shallow water equations. Proc. Acad. Sci. Paris Ser. 1 324 (1997) 593-598. | MR | Zbl
, and ,[8] Global regularity and ïntegrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Asympt. Anal. 15 (1997) 103-150. | MR | Zbl
, and ,[9] Global splitting and regularity of rotating shallow-water equations. Eur. J. Mech., B/Fluids 16, No 1, (1997) 725-754. | MR | Zbl
, and ,[10] On the nonlinear baroclinic waves and adjustment of pancake dynamics. Theor. and Comp. Fluid Dynamics 11 (1998) 215-235. | Zbl
, and ,[11] On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. and Comp. Fluid Dyn. 9 (1997) 223-251. | Zbl
, , and ,[12] On the regularity of three dimensional rotating Euler-Boussinesq equations. Math. Models Methods Appl. Sci., 9, No. 7 (1999) 1089-1121. | MR | Zbl
, and ,[13] Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Lett. Appl. Math. (to appear). | MR
, and ,[14] Global Regularity of 3D Rotating Navier Stokes Equations for Resonant Domains. Indiana University Mathematics Journal 48, No. 3, (1999) 1133-1176. | MR | Zbl
, and ,[15] Fast singular oscillating limits of stably stratified three-dimensional Euler-Boussinesq equations and ageostrophic wave fronts, to appear in Mathematics of Atmosphere and Ocean Dynamics, Cambridge University Press (1999).
, and ,[16] Attractors of Evolution Equations, North-Holland, Amsterdam (1992). | MR | Zbl
and ,[17] Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de Rn. Annali della Scuola Normale Superiore di Pisa 4 (1977) 647-687. | Numdam | MR | Zbl
and ,[18] Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atm. Sci. 52, No. 24, (1995)4410-4428. | MR
,[19] Validity of the quasigeostrophic model for large-scale flow in the atmosphere and the ocean. SIAM J. Math. Anal. 25, No. 4, (1994) 1023-1068. | MR | Zbl
and ,[20] Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771-831. | MR | Zbl
, and ,[21] A propos d'un problème de pénalisation de type antisymétrique. Proc. Parts Acad. Sci. 321 (1995) 861-864. | MR | Zbl
,[22] The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. and Comp. Fluid Dyn. 9, No. 3/4, (1997) 183-191. | Zbl
,[23] Navier-Stokes Equations, The University of Chicago Press (1988). | MR | Zbl
and ,[24] Contribution à l'analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l'Air 345 (1958). | MR
,[25] Hydrodynamic Stability, Cambridge University Press (1981). | MR | Zbl
and ,[26] Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Diff. Eqs. 21 (1996) 619-658. | MR | Zbl
and ,[27] Un résultat de stabilité pour les équations des fluides tournants, C.R. Acad. Sci. Paris, Série I (1997) 183-186. | MR | Zbl
,[28] Asymptotics of the solutions of hyperbolic equations with a skew-symmetrie perturbation. J. Differential Equations 150 (1998) 363-384. | MR | Zbl
,[29] Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. | MR | Zbl
,[30] Rotating fluids and inertial waves. Proc. Acad. Sci. Paris Ser. 1 321 (1995) 711-714. | MR | Zbl
,[31] Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J. 70 (1993) 373-404. | MR | Zbl
, and ,[32] Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal. 114 (1993) 106-231. | MR | Zbl
, and ,[33] Coherent nonlinear waves and the Wiener algebra. Ann. Inst. Fourier 44 (1994) 167-196. | Numdam | MR | Zbl
, and ,[34] Coherent and focusing multidimensional nonlinear geometric optics. Ann. Scient. E. N. S. Paris 4 (1995) 28, 51-113. | Numdam | MR | Zbl
, and ,[35] A numerical study of an operator splitting method for rotating flows with large ageostrophic initial data. Theor. and Comp. Fluid Dyn. 13, No. 2, (1998) 143-159. | Zbl
, and ,[36] The Mathematical Theory of Viscous Incompressible Flow, 2nd édition, Gordon and Breach, New York (1969). | MR | Zbl
,[37] Geostrophic asymptotics of the primitive equations of the atmosphere. Topological Methods in Nonlinear Analysis 4 (1994) 253-287, special issue dedicated to J. Leray. | MR | Zbl
, and ,[38] A simple global model for the general circulation of the atmosphere. Comm. Pure Appl. Math. 50 (1997) 707-752. | MR | Zbl
, and ,[39] Invariant helical subspaces for the Navier-Stokes Equations. Arch. for Rational Mech. and Anal. 112, No. 3, (1990) 193-222. | MR | Zbl
, and ,[40] Long-time averaged rotating shallow-water equations, Proc. of the First Asian Computational Fluid Dynamics Conference, W. H. Hui, Y.-K. Kwok and J. R. Chasnov Eds., vol. 3, Hong Kong University of Science and Technology (1995) 1227-1230.
and ,[41] Numerical experiments of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202 (1989) 117.
and ,[42] Geophysical Fluid Dynamics, 2nd édition, Springer-Verlag (1987). | Zbl
,[43] Sur la précession des corps déformables. Bull. Astronomique 27 (1910) 321.
,[44] Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6, No. 3, (1993) 503-568. | MR | Zbl
and ,[45] Fast singular limits of hyperbolic PDE's. J. Differential Equations 114 (1994) 476-512. | MR | Zbl
,[46] Singular integrals and differentiability properties of functions, Princeton University Press (1970). | MR | Zbl
,[47] Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia 18, No. 1, (1954) 3-50.
,[48] Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam (1984). | MR | Zbl
,[49] Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia (1983). | MR | Zbl
,