@article{M2AN_2000__34_1_47_0, author = {Hebeker, Friedrich Karl}, title = {A domain splitting method for heat conduction problems in composite materials}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {47--62}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {1}, year = {2000}, mrnumber = {1735977}, zbl = {0952.65070}, language = {en}, url = {http://www.numdam.org/item/M2AN_2000__34_1_47_0/} }
TY - JOUR AU - Hebeker, Friedrich Karl TI - A domain splitting method for heat conduction problems in composite materials JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 47 EP - 62 VL - 34 IS - 1 PB - Dunod PP - Paris UR - http://www.numdam.org/item/M2AN_2000__34_1_47_0/ LA - en ID - M2AN_2000__34_1_47_0 ER -
%0 Journal Article %A Hebeker, Friedrich Karl %T A domain splitting method for heat conduction problems in composite materials %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 47-62 %V 34 %N 1 %I Dunod %C Paris %U http://www.numdam.org/item/M2AN_2000__34_1_47_0/ %G en %F M2AN_2000__34_1_47_0
Hebeker, Friedrich Karl. A domain splitting method for heat conduction problems in composite materials. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 1, pp. 47-62. http://www.numdam.org/item/M2AN_2000__34_1_47_0/
[1] A domain splitting algorithm for parabolic problems. Computing 49 (1992) 11-23. | MR | Zbl
, and ,[2] A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69. | MR | Zbl
, and ,[3] Domain splitting algorithm for mixed finite element approximations to parabolic problems. East-West J. Numer. Math. 4 (1996) 121-135. | MR | Zbl
and ,[4] Finite element methods and their convergence analysis for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175-202. | MR | Zbl
and ,[5] Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart (1986). | MR | Zbl
,[6] Composite finite elements for the approximation of PDEs on domains with complicated microstructures. Numer. Math. 75 (1997) 447-472. | MR | Zbl
and ,[7] Composite materials of shape-memory alloys: micromechanical modelling and homogenization (in German). Ph.D. thesis, Technische Universitàt München (1997).
,[8] An a posteriori error estimator for elliptic boundary and interface problems. Preprint 97-46 (SFB 359), Universität Heidelberg (1997); submitted.
,[9] Multigrid convergence analysis for elliptic problems arising in composite materials (in preparation).
,[10] Unsteady convection and convection-diffusion problems via direct overlapping domain decomposition methods. Preprint 93-54 (SFB 359), Universität Heidelberg, 1993; Numer. Methods Partial Differential Equations 14 (1998) 387-406. | MR | Zbl
and ,[11] Finite element analysis on the Lawrence-Doniach model for layered superconductors. Numer. Funct. Anal. Optim. 18 (1997) 567-589. | MR | Zbl
and ,[12] An overlapping domain decomposition method to parallelize the solution of parabolic differential equations (in German). Ph.D. thesis, Universität Heidelberg (1994). | Zbl
,[13] Composite materials of shape-memory alloys: modelling as layers and numerical simulation (in German). Ph.D. thesis, Technische Universität München (1997).
,[14] New algorithms for approximate realization of implicit difference schemes. Sov. J. Numer. Anal. Modell. 3 (1988) 99-114. | MR | Zbl
,[15] Domain decomposition methods for unsteady convection diffusion problems. Comput. Methods Appl. Sci. Engin. (Proceedings of the Ninth International Conference, Paris 1990) SIAM, Philadelphia (1990) 211-227. | MR | Zbl
,[16] Overlapping domain decomposition methods for finite element problems with singular perturbed operators. in Domain decomposition Methods for Partial differential equations, R. Glowinski et al. Eds., SIAM, Philadelphia. Proc. of the 4th Intl. Symp. (1991) 223-241. | MR | Zbl
,[17] Numerical Approximation of Partial Differential Equations. Springer, Berlin etc. (1994). | MR | Zbl
and ,[18] Analysis of a domain splitting method for nonstationary convection-diffusion problems. East-West J. Numer. Math. 2 (1994) 151-172. | MR | Zbl
and ,[19] Partielle Differentialgleichungen. Teubner, Stuttgart (1982). | MR | Zbl
,