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A CLASS OF TIME DISCRETE SCHEMES FOR A PHASE-FIELD SYSTEM
OF PENROSE-FIFE TYPE

OLAF KLEIN1

Abstract. In this paper, a phase field System of Penrose-Fife type wit h non-conserved order pa-
rameter is considered. A class of time—discrete schemes for an initial-boundary value problem for this
phase-field System is presented. In three space dimensions, convergence is proved and an error estimate
linear with respect to the time-step size is derived.
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1. INTRODUCTION

In [29], Penrose and Fife derived a phase-field System modeling the dynamics of diffusive phase transitions.
In the case of a non-conserved order parameter, their approach leads to the following System:

9, (1.1)

r,Xt ~ e^x + (3(X) ~ v\x) B - ^ • (1-2)

This System of an energy balance (1.1) coupled with an évolution équation (1.2) for the order parameter
détermines the évolution of the absolute température 6 and the order parameter x- Her e, CQ and K dénote the
spécifie heat and thermal conductivity respectively, which are supposed to be positive constants. The datum g
represent s heat sources or sinks, and rj stands for a positive space-dependent relaxation coefficient. Choosing
this coefficient in a particular way, an anisotropic growth can be simulât éd.

The positive constant £ is a relaxation coefficient and /3 dénotes the subdifferential of the convex but non-
smooth part of a potential on M, while —a corresponds to the non-convex but differentiable part of the potential.
The latent heat of the phase transition is represented by À'(x).

In the context of solid-liquid phase transitions, one typically has a quadratic or linear function À and

<7(S) = ^ + p 5
2 , V s e R , (1.3)

c'a
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where 9c dénotes some critical température and p some positive constant. For fi (s) = 2ps3, we see that
f3(s) — o"'(s) + 9gl\'(s) is the derivative of the double well potential f (s — l)2(s + l)2. If (5 is the subdifferential
of the indicator function i"[-i,i] of the interval [—1,1], we see that p(s) — <rf(s) 4- ö^1A/(5) corresponds to the
"derivative" of the double obstacle potential 7[_1}1](s) + p(l — s2), which has been introduced for the standard
phase-field System by Blowey and Elliott (see [3]).

In the mean-field theory of the Ising ferromagnet as in Section 4 of [29], one has quadratic functions a and
A, D(P) = (0,1), and

-«ï-lnf^W'ln

where p* is some positive constant.
In [13], Horn considers a time-discrete scheme in one space dimension for the Penrose-=Fife System with a

double well potential and quadratic A and a. He dérives an error estimât e of order y/h, where h dénotes the
time-step size.

In previous works [16,17] of the author, a time discrete scheme for a Penrose-Fife System with a linear or
quadratic and special choices for (5 has been considered and an error estimate of order y/h has been shown.
These results hold in three space dimensions, but are restricted to the situation, when A'(x) is some constant,
such that some cancellations of the coupling terms can be used in the dérivation of a priori estimâtes and of
error estimâtes.

If A'(x) is a function of x, as in the original Penrose-Fife System, these cancellations do not appear. Hence, in
this case a more sophisticated argument for dealing with the coupling terms is needed to prove the convergence
of the numerical scheme in three space dimensions.

Therefore, the fîrst main novelty of this work is the dérivation of a class of such schemes for Penrose-Fife
Systems with quite gênerai A, which covers all the situations discussed above.

The other rnain novelty is the error estimate for the schernes which is linear with respect to h, while in
[13,16,17] only one of order y/h is derived. The linear order of the error estimate is proved by using arguments
similar to Nochetto, Savaré, and Verdi in [28]. Moreover, in view of the results for Euler schemes for linear
parabolic problems (cf. Sect. 3.1 of Chap. II in [11]), this resuit is optimal.

Using the time-discrete scheme, the existence of a unique solution to the Penrose-Fife System is proved.
This resuit is a minor novelty of this paper, because of the weakened regularity assumption used for A and a.
These functions are supposed to be C1 -functions on R with A' and af locally Lipschitz continuous such that
the Lipschitz constants fulfill some growth conditions.

Until now, in papers concerning existence, uniqueness, and regularity of similar Penrose-Fife Systems, these
functions are supposed to be at least C2-functions with A" bounded (see, e.g. [12,15,20,22,30] or Cfl-functions
with A convex (see [10]) or A' globally Lipschitz continuous (see [18,19]).

The same holds for papers like [5,6,9,23], where more gênerai heat flux laws are considered.
The layout of this paper is as follows: In Section 2, a précise formulation of the considered phase-fleld

System is given, the class of time-discrete schemes is introduced, and the existence and approximation results
are presented. The remaining sections are devoted to the proof of these results, and they are briefly discussed
at the end of Section 2.

2. THE PENROSE-FIFE SYSTEM AND THE TIME-DISCRETE SCHEMES

In this section, a précise formulation of the considered phase-neld System of Penrose-Fife type is given.
Moreover, existence results and approximation results for a class of time-discrete schemes are presented.
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2.1. The phase—field system

In the sequel, Q, C RN with N E {2,3} dénotes a bounded, open domain with smooth boundary F and T > 0
stands for a final time. Let QT '-= ̂  x (0,T) and TT := F x (0,T). We consider the following Penrose-Fife
System:

(PF) Find a quadruple (0, n, x, 0 fulfilling

n £°°(0,T; ff1^)), (2.1a)

n L°°(0,T;tf2(Q)), (2.1b)
2 (2.1c)

a.e. in QT, (2.1d)

+ A'(x)Xt + «Au = g a.e. in f2T, (2.1e)

£-<7'(x) = -A'(x)u a.e. inOT , (2.1f)

« ^ + 7 u = C, ^r=0 a.e. i n r r , (2.1g)
an an

0(-,O)=0°, x(-,0)=x° a.e. infi. (2.1h)

For dealing with this System, the following assumptions will be used:

(Al) Let f3 be a maximal monotone graph on M and <f> : R —> [0, oo] a convex, lower semicontinuous function
<j) : R —> [0, oo] satisfying

/9 = a^, 0 € £>(/?), 0e/5(0), i

(A2) There are positive constants C*,p,q such that

|A"(s)| < Cî (|s|p + 1), |<T"(S)| < Cl (\s\q + 1) for a.e. s G D(J3).

(A3) We have positive constants c-r,,^, and ĉ  such that

TjeL00^), T]>cv a.e. infî,

7€L»(0,riC
1(r))1 lt£L°°(TT), 7 > c 7 a.e. inrT,

C G Hl(0,T;L2(r)) n L°°(rT) n L°°(0,r;Hi(r)) , C > cC a.e. inIY.

(A4) We consider initial data 0o,x°,«o,£0 such that

a-e-infî, ^ = 0 a.e. in T.

2.2. The class of time discrete schemes
To allow for variable time-steps, we consider décompositions of (0, T) that do not need to be uniform, but

satisfy the following assumption, where Cdown and cup are fixed positive constants such that Cdown < 1 < cup.
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( A 5 ) T h e d é c o m p o s i t i o n Z = ( t o j t i ) • • • ̂ K } w i t h 0 = to < t\ < • • • < £ # = T a n d hm :— tm - t m _ i , for
1 < m < ÜT, fulfills

Cdown^m-l < hm < Cuphm-i, V 1 < 7TI < K.

We deflne the width \Z\ of the décomposition by \Z\ := max hm, and, for 1 < m < K,
l<m<K

9m{x):=^~ J g(x,t)dt, \fx E 0, (2.2a)

tm- l

-rm{<r)--=T- f l(cx,t)dt, Çm(<r):~ [ Ç(a,t)dt, Va e T. (2.2b)

tm — l tm—l

Now. the following time-discrete scheme (Dz) for the Penrose-Fife system is considered
(Dz) For 1 < m < K, find

0m G L2(tt), UmtXm € H2(tt), U e L2(Ü) (2.3a)

such that

) a.e. inO, (2.3b)

c0 r + Xd(Xm,Xm-i) r + KAum = gm a.e. in fi, (2.3c)

a>e_ i n ^ ; (2.3d)

0 a.e. m r , (2.3e)K = 7mum Cm, ^ r =

an an

with

^o-Ö0 , uo:=u°, Xo-=X°, Co:=^°-

Hère, approximations Â  and o'à for A' and af are used such that the following assumption is satisfied:

(2.3f)

(A6) Let A^ af
d : R x R —+ IR be continuons fonctions, and let C^p.q be positive constants with p < 1, g < 4

such that, for all r^s^r', s' G D(/3),

Xd{s,s) = \'(s), a'd(s,s) = a'(s), (a'd(r,s)f < C^(r) + <t>(s) + 1),

|A^(r,r') - A'd(s, s')l < C2* (|r - s\ + \r> - s'\) (\r\p + \r'\p + \s\p + \s'\p + l) ,

K(r, r') - a'd(s, s')\ < C*2 (|r -s\ + \r' - s'\) (\r\q + \r'\q + \s\q + \s'\g + l ) ,

-X'd(r, s)(r -s)< - A ( r ) + A(s) + C2*(r - s ) 2 . (2.4)

Remark 2.1. The time-discrete scheme (Dz) is an Euler scheme in time for the Penrose-Fife system (PF),
which is fully implicit, except for the treatment of the nonlinearities A' and er'. The time-discrete scheme (Dz),
especially the approximation used for the coupling terms, is chosen in such a way that one can use discrete
versions of the a priori estimâtes derived by Sprekels and Zheng (cf. [30]).
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By introducing the gênerai approximations Xd(xmiXm-i) and <Jf
d(Xm,Xm-i) in (Dz), the same formulation

can be used to investigate a bunch of different time-discrete schemes. A fully implicit scheme corresponds to the
choices Xd(r.s) = À'(r) and ad(r^s) — <r'(r). A fully explicit treatment of nonlinearities À' and a' corresponds
toA^r, s) = A'(S) and <^(r, s) = a'(s).

For the time-discrete scheme there holds:

Theorem 2.1. Assume that (A1-A6) hold. The scheme has a unique solution, if \Z\ is sufficiently small.

Appropriate choices for the approximations Xf
d and ad are discussed in the foilowing remark.

Remark 2.2. ïf a is quadratic, the implicit approximation will be linear in Xm and should be used, cf. Re-
mark 2.4. Only if a' is not linear, more gênerai approximations can be really useful. In this case, one would like
to use approximations which are still linear in the implicit part, e.g. ad(r,s) = ao(r — s) + af(s) with O~Q e R
flxed or af

d(r, s) = a"(*)(r - s) + a'(s), if a e C2(D(f3)).
If the explicit approximation for À' is used, Xd(xmiXm-i) does not depend on %m) and the coupling between

the two équations (2.3c, 2.3d) becomes a linear one. For any other choice for Xd> the coupling term in the
discrete energy balance (2.3c) is nonlinear, and the À^(xm,Xm-i)^m-term in the discrete order parameter
équation dépends on x-m and um, such that it becomes more complicated to solve this System numerically.

The foilowing choices for ad and À̂  fulfill (A6), if (A2) is satisfied for À and a, see Lemma 3.1:

(a) Any convex combination of a'(Xm) and a'(xm-i) can be used for cr^(xm,Xm~i)-
(b) One particular choice for \f

d is the foilowing approximation for a derivative, which has been used by
Niezgódka and Sprekels in équation (2.3) of [27]:

T-8 ' l f r ^ S ' (2.5)
r), if r = s.

If one chooses this function as À̂  , the approximation for Xf(x)Xt ^sed in the discrete energy balance
(2.3c) will coincide with the discrete différence quotient arising in the approximation of (X(x))t •

(c) If we have a uniform upper and a uniform lower bound for À" a.e. on D(/3)y we can use every convex
combination of A'(xm) and À'(xm-i) for À^(xm,Xm-i).

If we have a uniform upper bound for À" a.e. on D(j3), we can use the explicit approximation
Xd(XrmXm-i) = -^(Xm-i)* If we have a uniform lower bound for À" a.e. on D{(3), we can use the
implicit approximation A^(xm, Xm-i) = A'(xm)-

The foilowing corollary and remark yield conditions to ensure the existence of a unique solution to the scheme
in concrete situations.

Corollary 2.1. Assume that (A1-A6) hold. There exists a solution to (Dz), if \Z\ < h*, where h* and C%
are positive constants with

h* (2 K ( r , s)f - C3*(0(S) + 1)) < C??<Kr), Vr, s G D(/3). (2.6)

The solution to the scheme is unique, if, in addition,

\'d(r,s) = X'(s), 2\Z\\a'd(r,s)-a'd(r',s)\<Cr,{r-r'\, Vr,r',s G £>(/?). (2.7)

Remark 2.3. Assume that (Al—A6) hold. If D{(3) is bounded, Corollary 2.1 yields that the scheme has a
solution for any time step, since one may always choose CJ > 0 such that (2 (crd{r} s)) — C^(4f(s) + 1)) < 0, for
ail r, s €£>(/?).
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If D(j3) is unbounded, we obtain from (A6) that (2.6) is satisfled for h* = 0^/20% and C^ = 2(7^ but this
value for the upper bound h* does not need to be the optimal one.

For ad explicit, i.e. crd(r, s) = af(s), we do not get any restriction for the time-step size from (2.6) or (2.7).
If A' is approximated explicitly and ad is globally Lipschitz continuous in the first variable on D((3) x £>(ƒ?),

the conditions (2.6, 2.7) lead to a computable upper bound for the time-step size to ensure the existence of a
unique solution.

In order to illustrate the use of Corollary 2.1, we consider an example: Let cv — 1 < T, 4>{r) ~ r4, <x'(r) = r2,
and af

d{r, s) = 2rs - s2, for r,s e D{f3) = R. Using (A6), we see that (2.6) holds for h* = c^jiCl < §T, but

applying Young's inequality yields that (2.6) is also satisfied for K = T and CJ := 32 {T/c^) + 6 (T/c,,)1^ + 2.
Since |cr^(r, s) — al

d{r\s)\ = \s\ \r — s\, (2.7) does not hold for any décomposition Z. Hence, for this example,
Corollary 2.1 yields that the scheme has a solution for any time step, but the corollary cannot be used to ensure
the uniqueness of the solution.

2.3. Existence and approximation resuit s

~£ )

f

We use the solution to (Dz) to construct an approximate solution (0z,ûz,xZ>~£, ) m (£°°(0)

the Penrose-Fife System ( P F ) . The function ôz is denned to be linear in time on [£m- i , tm] for m = 1 , . . . ,

such that Oz(tk) = 6k holds for fe — 0 , . . . , K. The functions uz and xZ are defined analogously. We define

piecewise constant in time by £ (t) = ^ for t € (£fc-i, tk] and k = 1 , . . . , K.

Theorem 2.2. Assume that (Al—A4) hold. Then there is a unique solution (0,u, x,£) to the Penrose-Fife
System (PF) . For this solution it holds that

n i>°°(fîr) n W ' ^ ^ T j i ï 1 ^ ) * ) , (2-8)

^îL^fi)) nL°°(nT ) , (2.9)

H tf^T;^1^)) H L°° (Î2T). (2.10)

Assume that (A6) is satisfied. As, for décompositions Z with (A5), \Z\ tends to Q, we have,

6Z —> 0 weakly in ^(O.T-L2^)), (2.11)

weakly-star in L°°(0, T; Hl(Q)) n L°° (fiT), (2.12)

weakly-star in W 1 ' 0 0 ^ , ^ Jï"1^)*), (2.13)

w weakly in i J ^ O ^ ; L2(Q)), (2.14)

weakly-star %n L°°(0, T; i/x(^)) n L°° (fiT), (2.15)

weakly in L2(U,T;H2(Q)), V 0 < U < T, (2.16)

X wea% m i7x(0, T; ff1^))» (2-17)

weakly-star in W1)OO(0,T;L2(Q)) H L°°(0,T; H2(Q)), (2.18)

£ weakly-star in L°°(0, T; L2(fl)). (2.19)

The following error-estimate is the main resuit of this work.
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Theorem 2.3. Assume that (Al—A6) hold and that \Z\ is sufficiently small. Let (#, t£,XîO &e ^ae solution to
the Penrose-Fife System (PF). We have a positive constant C, independent of Z, such that

W-e ûz ~u\

(2-20)

Remark 2.4 (Numerical implementation). In a lot of physically relevant situations, see [29], the considered
fonctions À and a are quadratic and <f> is bounded from below by a quadratic function, Le. we have positive
constants C%,C§ with

4>(s) + Cl > C;s2, Vs G D(0). (2.21)

Hence, (A2) holds, and (A6) is satisfied for

</d(r,8):=o'(r), \'d(r, s) := A'(s), V r , s € l ,

which are the most promising choices for the numerical computations, because of the following properties: A
careful inspection of the use of the assumption (A5) in the proof yields that the lower bound Cdown^m-i for
hm in (A5) can be omitted, if the implicit approximation for af is used. This approximation is linear in %m,
since a is quadratic. Moreover, the use of the explicit approximation for À' is the only choice for À ,̂ such that
the two équations (2.3c, d) are linearly coupled, cf. Remark 2.1.

If <j"(o) = 0 or otherwise \Z\ < min(c^Q/4 |<r"(0)|2, cn/2 |cr"(O)|) holds, Corollary 2.1 yields that the scheme
has a unique solution. Theorem 2.3 yields a convergence linear with respect to the time-step size. Moreover, a
finite element discretization and a nonlinear Gauss-Seidel scheme similar to the one used in Section 10 of [16]
can be employed to find approximative solutions to (Dz).

Remark 2.5. If the regularity assumption for g in (A3) is weakened to g G L°° (fîr), ail results of this work
still holds, except for the error estimâtes in Theorem 2.3.

The layout of the proof is as follows: In Section 3, estimâtes concerning the approximation of the data are
derived, and, by using a fîxed point argument, the existence of a solution to the scheme is shown under the
additional assumption that the domain D(f3) is bounded.

In Section 4, uniform a priori estimâtes are derived. The first a priori estimate in Lemma 4.2 is an energy
estimate, where the coupling terms cancel each other, thanks to the chosen approximations of A'(x). The
coupling terms do not cancel each other completely in the second a priori estimate in Lemma 4.3. Hence, the
discrete version of u (A'(x))t has to be estimated by using the first a priori estimate.

Afterwards, an a priori estimate for the #2(17)-norm of Xm is derived in Lemma 4.4. The main results of
Lemmas 4.5-4.8 are the uniform bounds for 0m and 1/Ôm — um in (4.39).

Based on the results of Section 3 and Section 4, the existence of a unique solution to the scheme is proved in
Section 5, to finish the proofs of Theorem 2.1 and Corollary 2.1. This is done by considering the time-discrete
scheme with j3 replaced by /? + dl[-c,c)i where I[~c,c] dénotes the indicator fonction of the interval [—C, C] for
some sufnciently large C > 0.

In Section 6, the proofs of Theorem 2.2 and Theorem 2.3 are completed, Le. the existence of a unique solution
to the Penrose-Fife System is proved and the error estimate is shown. The first error estimate is derived in
Lemma 6.3. Hère, and even more extensively in Lemma 6.2, we apply estimâtes similar to those used by
Nochetto, Savaré, and Verdi in [28], to improve the order of the error estimate from \J\Z\ as in [16,17] to \Z\.

The first error estimate is used to prove the uniqueness of the solution to the Penrose-Fife system and is
afterwards improved in Section 6.3 to dérive the error estimate (2.20).
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In the special situation A'(x) = L = A'(xm,Xm-i) for some constant L which has been considered in the
previous works [16,17], the coupling terms in the proof of the second a priori estimate cancelled each other.
Hence, this estimate could be derived directly and led to uniform a priori estimâtes also if e and/or 77 tend
to zero, which is not the case for the a priori estimâtes derived in the present work. Moreover, in the error
estimate in this work the coupling terms do not cancel each other as in [16,17], such that additional terms have
to be estimated.

3. SOME PROPERTIES OF THE APPROXIMATION OF THE DATA

AND A SPECIAL EXISTENCE RESULT

To prépare the proof of the theorems and the corollary in the last section, some notations will be fbced and
some properties for the approximation of the data will be proved. Moreover, the existence of a unique solution
will be shown, under the additional condition that D(f3) is bounded.

In the sequel, we use the notation ||-||p for the Lp(il)-norm, for all p G [l,oo]. Moreover, ||-||2 will also be
used for the (L2(Q))2 resp. (L2(Ü))3 norm.

3.1. Properties of the data and their approximations

In the following lemma it is shown that those approximations discussed in Remark 2.2 fulfill the
condition (A6).

L e m m a 3 .1 . Assume that (A2) holds. Let eu G [0,1] be given and define af
d : M x R —> IR by

a'd(r, s) - W(/(r) + (1 - w)a'(s), Vr, s G R. (3.1)

(a) If \'d = A'+ (cf. (2.5);, we have (A6) and

Ai,(r ,s)(r -s)= A(r) - A(s), V r , 5 G R. (3.2)

(b) Let

A'd(r, s) = w*A'(r) + (1 - ^*)A'(s), Vr, s G E, (3.3)

with some CJ* G [0,1].
If we have positive constants C\,Ö2 such that —C\ < X"(s) < C2 for a.e. s G D(/3), the assumption

(A6) holds.
If cu* = 0 and we have a positive constant C3 with A"(s) < C3 for a.e. s G D{p>), the assumption (A6)

is satisfied.
If ÜJ* = 1 a,nd we have a positive constant C4 with —C4 < X/f($) for a.e. s G D(/3), the assumption

(A6) holds.

1
Proof First, we consider part (a) of the lemma. Thanks to (2.5), we have A'+(r, s) = ƒ A'(s -f r(r — s)) dr and

o
(3.2). Hence, for Â  — A'+, we can use (3.1), Schwarz's inequality, and (A2), to show that (A6) is satisfied.
This yields part (a) of the Lemma.

To prove part (b) of the lemma, we need only to show that the last estimate in (A6), i.e. (2.4), is satisfied,
since the remaining assumptions in (A6) follow by an argumentation similar to the one above. For r,s e £>(ƒ?),
applying Taylor's formula and (3.3) gives \x G D(0) between r and s such that

-X'd(r, s)(r - s) + A(r) - X(s) = u>*(r - s) f A"(r)dr + ( l -w*) ( r - s ) ƒ A"(T)CIT.



A CLASS OF TIME DISCRETE SCHEMES FOR A PHASE-FIELD SYSTEM OF PENROSB-FIFE TYPE 1269

Now, we see immédiately that (2.4) holds under the considered assumptions. D

Lemma 3.2. Assume that (A3) holds. Then there exist positive constants Ci,C2,. . . ,Ce, such that, for ail
décompositions Z with (A5), the functions g-m, 7m ; and Cm defined in (2.2) fulfill, for 1 < m < K,

Cl N & 1 ( n ) < K \\VV\\1

<ymv G

< C2 \\vfHl(n)

\\lmv\\Hi{r) < C3 \\v\\H1(a)

< Cm a.e. inT, f f
JUvda + J
r n

and

max
l<7n<K-l

l|7

7m+l - '

ci(r) + HCm||Loo(r) _ : ^ö T

m=l

Cm+1 ~~ Cn

where the positive constants are specified in (A3).

Proof. This lemma follows from (Al, A5), the trace-mapping from
Hï(F) by H1 (r) and L2(F).

to H* (F), and the interpolation of
D

3,2. The existence proof for D(f3) bounded

Lemma 3.3. Assume that (Al—A6) hold and that D(/3) is bounded. Then there exists a solution to (Dz).

Proof. From (2.3f), we get #o> ̂ o? Xo, £o• Now, we assume that 0m_i E L2(Q),Xm~i ^ H2{0) for some m G
{1 , . . . , i^} are given. To show that there exists a solution to the System in (Dz), Le. to (2.3a-2.3e), we will first
consider the discrete energy balance équation (2.3c) and the discrete équation (2.3d) for the order parameter
séparât ely. Aft'erwards, we will rewrite the System as a fixed point problem and apply Schauder's fixed point
theorem.

Lemma 3.4. For every x ^ L°°(iï), there is a unique u e H2(fl) such that

0 < ü a.e. in 17, - G L2{Ct), -K^~ ^
u on

a.e. inT,

Proof. Let

—T- - hmK,Aü = -coOm-i - hmgm + A^XÏ Xm-i) (x ~ Xm-i) a.e. in Q.

L°°(ft) be given. Thanks to (A6) and Xm-i e C(fî), we have

-Xm~ i)eL2(ft).

(3.4)

(3.5)

By translating the proof of Corollary 13 of [4], we see that the operator corresponding to (3.4) and the left-hand
side of (3.5) is maximal monotone. By showing that this operator is also coercive, we obtain that the operator
is also surjective. The injectivity follows by estimating the différence between two given solutions. Details can
be found in Lemma 5.1 of [16]. •
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Lemma 3.5. For every x
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), ü G L2(Q) there exists a unique x such that

X G H2(Q), D(P) a.e. m fi, -^ = 0 a.e. in T,
on

(3.6)

_ g A - _ i } - fl e

Proo/. By (Al , A3), we can rewrite (3.6-3.8) as

a'd(X, Xm-i) - Ad (x, Xm-i) û + -f-Xm-i,

(3.8)

(3-9)

where 5 : L2(Q) —> {W Ç L2(Q)} is a nonlinear operator. Using Corollary 13 of [4], we see that this operator
is maximal monotone. Details can be found in (5.7, 5.8) and Lemma 5.5 of [16].

Because of (A6, A3), x € L°°(Çt), Xm~i e H2(ft) C C(fi), we see that the right-hand side of (3.9) is in
). Hence, Theorem 2 of [4] yields that there is a unique solution x to (3.6-3.8). D

In this proof, Cl, for % G N, will always dénote generic positive constants, independent of x

M ~ [x e L2(Q) : x

with

a.e. in (3.10)

This is a closed and convex subset of L2 (fi).
We have:

Lemma 3.6. The functions r f—> o^(r,Xm-iW) ûnd r i—>• A^(r,Xm-iW) ^re Lipschitz continuous on D(f3)
for every x G Q, with a Lipschitz constant independent of x, There is a positive constant C± such that, for ail

+ < (3.11)

Proof Since D(fi) is bounded and Xm-i ^ H2(Q,) c C(fi), (A6) yields that the assertions of this lemma
hold. D

Combining Lemma 3.4 and Lemma 3.5, we see that for every x £ A4 there is a unique ü € H2(ft) and a
unique *(x) := X € H2(Ü) such that (3.4-3.5) and (3.6-3.8) hold.

This defines a mapping ^ : M —> M and any fixed point of ^ leads to a solution to the System in (Dz), i-e.
to (2.3a—2.3e). Therefore, it is sufficient to prove that \I/ has a fixed point.

We test (3.5) by hmü, apply Green's formula, Lemma 3.2, Hölder's inequality, (3.4, 3.11), and Young's
inequality to conclude that

I CrnÜda + / ( - ~ Xm-l))

(3.12)

Owing to (Al) , we have ws > 0 for all 5 G D(/3)> w G 0(s). Therefore, by testing (3.7) by x and applying
(A3), Green's formula, (3.6, 3.11), Hölder's inequality, (3.12), and Young's inequality, we get

Xm~l

hm
'd(X, Xm-l) ~ A'(X, Xm-l)Û I X Ü 2 '
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Hence, we see that x £ M-i with

Therefore, we observe that Mi is a nonempty, convex, compact set in L2(Q) and, by construction, that \I> maps
M\ into itself. Thanks to Lemma 3.7 below, ^ is on M\ continuous. Now, Schauder's fixed point theorem
yields the existence of a fixed point of ^ in A^i- •

Lemma 3.7. ty : A4 —> A4 is L2(ÇÏ)-continuous.

Proof. Let xî » X2 m -M be arbitrary, and

Xi := * (x î ) , X2 := * (xî), X* := XÏ " X2, X -= Xi - X2-

Combining (3.4, 3.5), (3.6-3.8), and the définition of * , we find üuü2 € H2(Q), £u£2 e L2{ü) such that

ûi > 0, ù2 > 0, fi G /?(xi), | 2 € /3(X2) a.e. in 0 ,

(3.13)

) hA{Ü -Ü2) = A^(xï,Xm-l)(xï ~ Xm-l) ~ A^(X2i Xm-l)(X2 ~ Xm-l) a.C in fi,

(3.14)

- 6 = -^d(XuXm-i)ûi + Xd{X2,Xrn~i)û2 + o-f
d(x\,Xrn-i) - v'dixl,Xm-i) a.e. in fi,

(3.15)

= "ym (^ï — Û2), — = O a.e. in F.

(3.16)

Testing (3.14) by ü :— ü\ — Ü2, integrating by parts, and using (3.16, 3.13), Lemma 3.2, Hölder's inequal-
ity, Lemma 3.6, and Young's inequality, we deduce

Ù II2

/U1U2H2
< ƒ (Ad(Xlï Xm-l)X* + (ArfCxï» Xm-l) - A^X^ Xm-l)) (X2 ~

9 v-̂ fi 9

—'. ̂ -^7 IX I o r ^ *? — ^*^8 IX lo ~r" I'Ü Io * \*̂ * ' )
2

We test (3.15) by x a n d use (3.13), the monotonicity of ƒ?, (A3), (3.16), and the generalized Hölder's inequal-
ity (see Lemma AP. 2) to dérive

+ Ikd(XÏïXm-l) -<7d(X2>Xm-l)||

Because of Lemma 3.6, (AP.l)j (3.17), and (3.12), we see

Hence, thanks to Young's inequality, we have shown that ^ is L2(fi)-continuous. D
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4. UNIFORM ESTIMÂTES

In this section, uniform estimâtes for the solutions to the time-discrete scheme are derived.
Assume that (A1-A6) hold and that \Z\ < /i*, where /i* and C£ are positive constants such that (2.6) is

satisfied.
Let (3* := <9</>* and 0* : R —> [0, oo] be either <j> or the function defined by

• < . ) { .* (4.1)
I oo, otherwise,

for some B > \\x°\\ • I n the light of (Al), we see that <j>* is a convex, lower semicontinuous function with

0<4><4>*<mR, 0€D((3*), int£>(/T) ^ 0, 0 €/T(0), ' 4>*\D{p.) = <P\D(f3-) • (4-2)

Now, a modified version of the time=discrete scheme is considered, where (3 in (Dz), i.e. in (2.3b), is replaced
by /3*. Let any solution to this scheme be given.

In the sequel, G%, for i G N, will always dénote positive generic constants, independent of the décomposition Z,
the considered choice of 0*, and the solution itself.

Remark 4.1. Recalling (2.3a, b, e, f), (A4), and the définition of </>*, we see that

0 < Um = -!-, Xm e £>(/?*) ç £>(/?), Cm e yS*(x-) = 9^*(xm) a.e. in ÎÎ,

Xm e H2{Q), - ^ - 0 a.e. in T, V0 < m < K.
on

Applying (2.3c), Green's formula, and (2.3e), we deduce that

1 )v dx - K / Vnm • Vt; dx - / jmUmV da =
hm J J J

Q r

fgmvdx - Umvda, Vv£Hl(n), l<m<K, (AA)

n r

with

^o := A(xo), Am := Am_i + A^(xm, Xm-i)(Xm ~ Xm-i) a.e. in fi, V 1 < m < if. (4.5)

The following Lemmas use ideas from [8,13=16,20,21,30].

Lemma 4.1. (a) There is a positive constant C\ such that

||Ao||6

+ llöo||Hi(n)nL~(n) + INHm(Q)nL-(n) + llln(öo)Hi < Ci- (4.6)

(b)

V ° , -eAxo + ô - cri(Xo,Xo) = "A^(xo,Xo)^o a.e. mfi, (4.7)
Aio
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with ho := \Z\. We have a positive constant C2 such that

Xo-X-ix ' 2

ho
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(4.8)

Proof. If </>* — </>, we use the initial condition (2.3f), (A2, A4), Sobolev's embedding Theorem, (A6), and (4.5)
to show that (4.6) is satisfied. If </>* / 0, in addition, (4.1) and B > ( ( x 0 ^ a re applied. Combining (4.7, 4.6),
and (A3) leads to (4.8). D

Lemma 4.2. There are two positive constants C3, C4 such that

K K

m=l m=l

Xm — Xm-1

hr

K

<C3 ,
m = l

(4.9)

(4.10)

Proof. Testing (2.3d) by (xm ~Xm~i)i taking the sum from m = 1 to m = fc, and using (A3), Green's formula,
(4.3, AP.5, 4.6, 4.2, 4.5), Schwarz's inequality, and Young's inequality, we deduce

m = l

<C5- V / - (4.11)

Let a := min ( 1 / 2 ^ , ^ / 6 ( 7 ^ ) , with Q , ^ as in (A2, A6). For 1 < m < Ky we insert v = hma - hmUm
in (4.4), use (4.3) and that — \/s is the derivative of the convex function — ln(s), take the sum from m = 1 to
m = fe, and apply Lemma 3.2, (4.6), and Young's inequality, to show that

>y"(-in(0*))
n

dx < C7 +
m = 1

k

ƒ (Am -
= 1 n

Am_i)(um - a)da;. (4.12)

Because of (4.5), (A6, A2), (4.6), Young's inequality, and the définition of a, we have

Hence, by using Lemma AP.8 and adding (4.12) to (4.11), we deduce

C* 11/9 II -\- r \\\v\(f) W\ -\- C

+|y;iiv(xm-

m = l

m = l

Xm Xm-1

Xm Xm-1

m~l
.|K(xm,Xm-i)|l2- (4-13)

m = l
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Since (A6), (2.6), and \Z\ < h* yield

l+ W(Xm-i)\\1 + J ldx) , Vl<m<K, (4.14)

\l < \

we obtain from (4.13), (A5), the discrete version of Gronwall's lemma, and (4.6) that (4.9) is satisfied. Therefore,
(4.10) holds because of (4.14). D

Lemma 4.3. There exists a constant Cvi such that

\ K

max
0<m<K

K

Xm ~ Xrn-l

Xm Xm—1 Xm—1 Xm —2

ro=l

with x-i> ^o &$ in Lemma 4-1-

m—l

2 K

Xm ~ Xm-1
K

m=1

~ sm— 1 )
Xm Xm —1

m = l

, (4.15)
2 m = l

Proof. Inserting v = — (um — um~i) in (4.4), taking the sum from m = 1 to m = fc, and applying (4.3, AP.5,
AP.4), Lemma 3.2, (4.9, 4.6), the generalized Hölder's inequality, hm < cUp/im_i, and Young's inequality, we
deduce that

7 ^ r'
- um~l

W Mfi)
m = l

+ - um-x) dx. (4.16)

For 2 < m < K, we test the différence of (2.3d) for m and m — 1 by (xm — Xm-i)/hm. By applying (A3),
Green's formula, (4.3), the monotonicity of ƒ?, (4.5), and (AP.5), we obtain that

Xm Xm—1 Xm—1 Xm—2

hm-1

/ Xm Xm—1 \

V ^m /

Xm Xm—1 Xm —1 Xm—2

- 1

vXm — X m - 1

Xm - X m - 1 dor

+ / K(Xm, Xm-l) - ^ , „ - 0 ̂  Z " " 1 dx , (4.17)

with

Ad,m-1 — ^(Xm-l ,Xm-2) , ^d,m-l :== ^ (Xm-1 , Xm-2) a.C in fi. (4.18)
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Testing the différence of (2.3d) for m = 1 and (4.7) by (xi — Xo)/^i and using the same argumentation as
above, we deduce that (4.17) holds also for m = 1 with

x'd,o '•= Ad(Xo, Xo), <r'dto := c^(Xo, Xo) a.e. in SI. (4.19)

Suraming up (4.17) from m = 1 to m = fc, adding the resulting estimate to (4.16), and using (A3), (4.9, 4.8),
we conclude that

\Xk-Xk~i

hk

Xm — Xm-1 Xm-1 ~ Xm-2 Xm Xm—1

Xm—1

m = l

ll«m-Wm-i||^
(n)

m = l

with

/i, fe :=

m = l

Xm Xm —1 - Am-A
) Um-i

i l nv* I
'"Tfh /

ƒ«' Xm Xm—1

(4.20)

(4.21)

(4.22)

Using (4.5), the generalized Hölder's inequality, and Schwarz's inequality, we deduce that

Xm Xm —1
< max

V l<m<Jt
'h*

\ m = l

with I^k := \\Xltm-l-Xd(Xm,Xm-l)\\l-
m = l hm-1

Now, owing to (AP.l, 4.9, 4.6), and Young's inequality, we observe that

2

= —r max
4

Xm — Xm-1

hm

(4.23)

(4.24)

Since 1/3 = 1/pi +p/6 holds for p1 := 6/(2 -p ) , we obtain, by (4.18, 4.19), (A6), the generalized Hölder's
inequality, hm < cuphm-i (AP.l, 4.9), that

m = 2

Xm Xm—1

K
hm-1

Pi

Xm-1 ~ Xm-2

"Ply

C20

+ iiixm-inu + iiixm-2nu +

Xm, Xm—1

K

(lllx
Pi

iriu + +
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Because of p < 1, we can use the Gagliardo-Nirenberg inequality (see Lemma AP.5) and Young's inequality to
deduce

m=l

Xm Xm — 1
C2i

Xm Xm—1

hm
(4.25)

Defining q± := 12/(6 - q), we have 1 = 1/çi -f- q/6 + 1/çi- It follows trom (4.22, 4.18, 4.19), (A6), and the
generalized Hölder's inequality that

Xm ~ Xm-l

m=2
+

\Xm-l — Xm-2

hm-1

Xm Xm— 1

(723^1
Xi ~ Xo

qi

Using (AP.l), (4.9), Young's inequality, (A5), the Gagliardo-Nirenberg inequality, and q < 4, we obtain that

i2,fc<
C15

m = l

X m - 1 + c:24 (4.26)

Combining (4.20, 4.24-4.26, 4.9), we conclude that

Xfc - Xk-l I , Crj v ^ | Xm - Xm-l —1 X Ï T ^ — 2

12 * m = i

\ X.m X.m—1

hm-1
m = l

X m Xm—1 I

TO=1 ]

7
/ l m=l

< C25 + ^T m a x
4 Km</c

m = l

Xm - X m - 1

/ l m

By taking the maximum from m = 1 to m = K, we see that (4.15) holds, because of (4.6).

Lemma 4,4. There exists a positive constant C26 such that

+ max
Q<m<K

<

. (4.27)

D

(4.28)

Proof. Testing formally (2.3d) by £m and using Green's formula, (2.3e, 4.3), and Young's inequality, we obtain

(4.29)A f i \ Xm Xm — 1 / r \

d (Xm, Xm-l) Um ~ ÏJ + Crd{Xm, Xm-l)

For a précise dérivation of this inequality, one has to replace /3* by the Yosida approximation f5\>n of /?*, see
p. 104 of [4], and test the modified version of (2.3d) by the approximations of Xm a nd £m- Here, one has to use
that the approximation of Xm is an element of Hlt6(Q) such that the generalized chain rules hold, see Theorem 1
of [26] and Lemma 2.1 and Remark 2.1 of [25]. Now, a passage to the limit and using Prob. 1.1 (iv) of Chap. II
in [2] lead to (4.29).
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Applying (A6), the generalized Hölder's inequality, p < 1, (AP.l), (4.9, 4.15), we obtain

1277

A;
d(Xm, Xm-l)U m\\2 < C27 (\\Xm - 0||6 + ||Xm-l - 0||6)

Combining this with (4.29, 4.10), (A3), (4.15) leads to

\\U\2 <
Comparing the terms in (2.3d), and using (A3), (4.15, 4,10, 4.31, 4.30), we see that

„Xm Xm — 1 , £

m - 1 i) IK
(4.30)

(4.31)

C30-< C30

Now, using Lemma AP.4, (4.9, 4.3), we conclude ||Xm||#2(^\ < C31. Combining this with (4.31, 4.6), we see
that (4.28) is satisfied. D

Lemma 4.5. There exists a positive constant C32 such that

Km<K 2

i

6

K

/ j

'm "~

h

"'m

771

A m —
7

tl

Am_i

m
+ max | |Am | | J ï l ( n )<C32. (4.32)

Proof. By looking at the terms in (4.4) and using (4.15) and Lemma 3.2, we see that

0m ~ &m—l , A m — A m - 1
max

Km<K

Thanks to (4.28), Sobolev's embedding Theorem, and (A6), we have

(4.33)

(4.34)

Combining this with (A6) and Theorem 1 of [26], we see that X'd(Xm,Xm-i) G Hlt6(Çl) and

,Xm-i)ll6 < C35.

Therefore, owing to (4.5), Young's inequality, the generalized Hölder's inequality, (4.34, 4.15), and Sobolev's
embedding Theorem, we have

max
Km<K

K2

2 m = l
£*- max

K

m = l

m = l

Xm
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Combining this with (4.33, 4.6), we see that (4.32) is satisfied. D

Lemma 4.6. We have 0m G H1^) forO<m<K.

Proof. We have 60 e H1^) by (2.3f) and (A4) . For 1 < m < K with 0 m _! e H1^), we define the
approximation 0 m , n e Hl(Ü) n L°°(fi) for 9m by

:— ( wm H )
- i

a.e. in f2, Vn e N.

The Lebesgue dominated convergence theorem and ö m e L2(S1) yield that

Om,n > #m strongly in L2(ft). (4.35)

Lemma 4.7. There exists a constant C37 such that

By applying (4.4) with v = ö ^ n and using (4.3), Hölder's inequality, Lemma 3.2, (4.32), (AP.l), and Young's
inequality, we see that this séquence is bounded in iJ1(Q). Combining this with (4.35), we conclude that
6m e H^Q). D

(4.36)

Proof. We multiply (2.3c) by hm and use (4.5). Summing up the resulting équation for m = 1 to m = i, we
find

% + A, + re >^ hmAum = co^o + An 4-
m=l m=l

a.e. in (4.37)

We test (4.37) by h%'ù±u%, take the sum from i = 1 to t = A:5 and apply Green's formula, (2.3e, 4.3), öm €
(AP.3, AP.2), Lemma 3.2, and Schwarz's inequality, to dérive

co53ft»
i=i

+ 2

ƒ H- 5 3 ft*& ) $ 3 ft*Aut 1 dx - 5 3 ft*+i / 5t+i 5 3 h

i=i / i=i / i=i ^ m=i

k r

5 3 k* ƒ
.=1 Ï!

dx +
k 1 f

5^ ^*~ / Ai (lïi
,=1 K /

- Ct) da .

Now, by utilizing Young's inequality, (4.6), Lemma 3.2, (4.15, 4.32), and hm < cup/im_i, we dérive

k

53
m = l

fc-1

~ 53 ^ y AT^II^ < c 3 9 +c 4 0 53
m = l

53 ̂ (4.38)

By applying the discrete version of GronwalFs lemma, we get a uniform upper bound for the left-hand side of
(4.38). Looking at the terms in (4.37) and applying (4.32, 4.6), and Lemma 3.2, we see that (4.36) holds. D
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Lemma 4.8. We have Om G C(Ù) for 0 < m < K} and there are two positive constants C41, C42 such that

K

m=l

K

(4.39)

(4.40)

Proof We deduce, by Lemma 3.2, (4.32, AP.l), that

fc

m=l

9m - <c43.

Thanks to (4.3-4.6, 4.15, 4.32, 4.36), and Lemma 3.2, we can apply Moser's technique as in Lemma 6.11 and
6.12 of [16], for e > 0 fixed, and dérive, by using (4.6), that

Combining this with um € H2(Q.) c C(Ö), and (4.3), we see that um is a continuous fonction on Q which is
bounded from above and below by positive constants. Combining this with (4.3, 4.15), and Hölder's inequality,
we see that 0m £ C(Ü) and (4.39) hold. Now, by looking at the terms in (2.3c), and using (4.5, 4.32), and
Lemma 3.2, we see that

K
\\Aumf2 < C45.

m = l

Now, Lemma AP.4 yields that (4.40) is satisfied, because of (2.3e), Lemma 3.2, and (4.15).

Lemma 4.9. We have

D

7A, Vl<k<K. (4.41)

Proof Applying (4.5), (A2), the mean value theorem, (A6), (4.28), and Sobolev's embedding Theorem, we
deduce

m = l

Xm Xm—1 a.e. in Q. (4.42)

Hence, recalling (AP.l, 4.15), we conclude

k

m = l

Xm Xm—1 \

K* ) m = l

Xm Xm — 1 \Z\.

D

5. PROOF OF THEOREM 2.1 AND COROLLARY 2.1

We assume that (A1-A6) hold.
In the framework of Theorem 2.1, we obtain from (A6) that (2.6) is satisfied for h* — cv

We assume that \Z\<h*.
and C | —
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In the framework of Corollary 2.1, it is part of the assumptions that \Z\ < h* where h* and C | are positive
constants fulfilling (2.6).

Because of (A4) and Sobolev's embedding Theorem, we see that j j x 0 ^ is finite.
For any B > ||x°|| > w e c a n consider $* as in (4.1), /?*, and the corresponding modified version of the

time-discrete scheme as in the last section. Lemma 3.3 yields that there exists a solution ( C ^ , x ^ , C m ) m ~ o
to this modified version of the scheme. Since the assumptions used in the last section are satisfied, the estimâtes
derived therein hold for this solution. Now, because of (4.28) and Sobolev's embedding Theorem, there is some
positive constant C", independent of B1 such that

max II x
0<m<Ku

Now, we consider B := C" + ||xO|! + 2. Thanks to (4.1), ƒ3* = d<f>*, and (3 = dfa we have

This yieldSj by (4.3, 5.1), that the solution to the modified version of scheme is also a solution to the unmodified
version of the scheme (Dz).

It remains to show the uniqueness of the solution. Assume that we have two solutions (0m , Um , Xm , £m )
V /m=o

( ("2} (1} f21) f2^ \
Om , Um , Xm JCm ) to the scheme (Dz). Hence, the estimâtes in the last section are valid for both

/ rn=0
solutions.

In the sequel, Ct7 for i € N, will always dénote positive generic constants, independent of the décomposition Z
and the considered solutions.

Thanks to (2.3f), we have 0™ - ef\ u{
0

1} = uf\ XQ] = X(Q\ é^ = é2) a-e- o n °-
To prove by induction that the two solutions coincide, we now assume that 1 < m < K is given such that

fl(l) _ fl(2) (1) ^ (2) (1) _ (2) __ « - o (5 21
C m _ x — t7m_i ?

 w m - l — V l ' Am-1 ~ Am- i — • X a- e- m S£- l ° - z ;

Now, let Um := u^} - ug} and Xm := Xm - Xm<
Using (2.3b, c, e), Green's formula, and (5.2), we deduce

^ i y a.e.inO, (5.3)

_ / (en ~Um 4-A^fv(1) Y*)
hm J \ W ^ dKXrn 'A }

O mm

f f
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This yields for v = —hmum, by Lemma 3.2,
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< ƒ Xd ƒ (A^\x*) - \'d(x£\x*)) . (5.4)

Recalling (2.3d, 5.2), we have

X') =

a.e.infi. (5.5)

Testing this équation by Xm and using (A3), Green's formula, (2.3e, 2.3b), and the monotonicity of /3, and
adding the resulting estimate to (5.4), we obtain, by (4.39),

C2 \\umf2 + hmCx + £L \\Xm\\l + e < h + h,

with

h •= ƒ (Ai(x£\ X') -

:= ƒ (*'d(x£\Xl -

, X*)

, X*))

- X*)um - u

(5.6)

(5.7)

(5.8)

Now, we consider the framework of Corollary 2.1 and Theorem 2.1 separately.

If we are in the framework of Corollary 2.1, the uniqueness needs only to be shown under the additional
assumption that (2.7) holds. Therefore, we have I\ = 0 and

h<
2\Z\

Hence, (5.6, 5.3, 5.5) yield that

a.e.infl. (5.9)

This finishes the proof of Corollary 2.1.

Now, we consider the framework of Theorem 2.1. (A6), (4.28), and Sobolev's embedding Theorem yield that

<C3\Xm\ a.e. in fl.
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Hence, by applying the generalized Hölder's inequality, (4.28, 4.39), and Young's inequality, we deduce

h +/2 <Cz \\Xm\\2 (llXm* -Xm-l | | l|Um||2 + «m j| IIXm||2) + C3 ||Xm|l2

Therefore, if we assume that \Z\ < c^/20^ we obtain I\ + I2 < (C2/2) ||um|l2 + {cv/2hm) ||Xm||2- Combining
this with (5.6, 5.3, 5.5), we see that (5.9) is satisfied.

Since we have shown that the scheme has a unique solution, if \Z\ is sufficiently small, Theorem 2.1 is
proved. D

6. PROOF OF THEOREM 2.2 AND THEOREM 2.3

We assume that (Al—A4, A6) hold. Thanks to (A6), we have positive constants h* and C£ such that (2.6)
is satisfied.

6.1. Properties of the approximations

In this section, we only consider décompositions Z with (A5) and \Z\ sufficiently small. Hence, Theorem 2.1
yields that there exists a unique solution to the time-discrete scheme (Dz). Let (0z,uz ,xZ ^ ) be the
cor r esponding approximations derived from the solution to (Dz) as in Section 2.3.

For (Am)^^o as in (4.5), we define the piecewise linear function Xz analogonsly to xZ The piecewise constant
functions 0Z, ûz, xZ\ ï2'» C^. 9Z\ ÂZ are defined analogously to \Z, and xZ € L°°(0,T;iî2(Q)) is defined by

XZ(t) = Xm-U Vt G (tm-utm), l<m<K. (6.1)

Then, by the définition of the approximations, (2.3a-f, 4.5), we have

xz<

3 < ü

VX

= e°, \

),T;Jff
1(^))ï üz e L2(0,T

~EZ ri TOO/f\ rp T2{{

üz ' ' ~~

düz _z_z jZ i

ï^(. 0) = «°, xZ(*,0) = x

^ L ^ O . T Ï H 2 ^ ) ) ,

^)),

D(/3), J e/?(x"Z) a.e. infir,

: + Âf +/cAüz = 5Z a.e. infiT,
?) = —XdixZ>XZyüZ a.e. in UT,

Jxz
 n öxz

dn dn T'
•0, Az(-,O) = A(x°) a.e. in fi.

(6.2a)

(6.2b)

(6.2c)

(6.2d)

(6.2e)

(6.2f)

(6-2g)

(6.2h)

In the sequel, C%, for iGN, will always dénote positive generic constants, independent of the décomposition Z.
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We find, from (4.15, 4.28, 4.32, 4.39, 4.40):

ÖZ» +
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I I U l

I *
< C2. (6.4)

The différence between the piecewise linear and the piecewise constant approximations can be estimated, by
using (4.15), (A2), (4.28), Sobolev's embedding Theorem, (4.32, 4.39, 4.41):

W-t \uz -üz

*7 ^

~X

For the approximation of the data, we have, by (A3):

zLemma 6.1. The functions <? , 7 , C fulfill

+

1 T)
c

rT)ni ~(o,r;Hi(r))

L2(O,T;L2(r»

<

<

Now, estimâtes similar to [28] are used to prove the following lemma.

Lemma 6.2. We have a positive constant Cg such that

s

"II^~ ' V s

for all x, with

Proo/. Prom (6.12, 6.2d), and /3 = 9̂ 6, we get

ƒ (X - XZ) dx dt
on on

s

< ff (

a.e.mJlT .

f (X 4>{XZ))

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

dt.
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For lz : (0, T] -> [0,1] deflned by

O. KLEIN

(6.13)

holds

XZ = (1 -

We apply the convexity of 0, to show that

a.e. in

+ <t>ixZ) + f (XZ " XZ)) dx àt.

Since (6.2d) and {3 — d(f> yield that the integrand is a.e. non-negative, we see, by (6,13, 2.3b,f), (A4), and
p = 90, that

< è ƒ ̂ ^ d* ƒ (~

- |z|2 V
2 ' ' ̂ —'

" Xm-l))

m = l

X m - l

Hence, (6.11) holds because of (4.15). D

6.2. E r r o r es t imâtes

Now, we estimate the différence between the approximation and one exact solution. Hère, ideas from [7,8,
16,28] are used.

Lemma 6.3. For every solution (ô,it, x>0 to the Penrose-Fife System (PF) there are positive constants CXQ,
such that

max
0<s<T

s

J(u(r)-Ûz(r))dr + max
0<s<T

s

Jf(r){u(r)-üz(T))dT u-üz\\2

e-t |v(x-x5

lz,2(0,T;L2(fi))

|2

(6.14)

< Cn\Z\. (6.15)

Proof. The generic constants may depend on the solution to the Penrose-Fife System.
Thanks to (2.1a,b), Sobolev's embedding Theorem, and (A2), we have

(6.16)
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n o o r

o r

First, we work on the équation for 9 and u. Intégrât ing the différence of (2.1e) and (6.2e) in time, and testing
the corresponding équation by v, and using (2.1g,h, 6.2g,h), we obtain for all v e iï1(Q),

t

f (co(0(t) - ez(t)) + X(x(t)) - Xz{t))vdx - K f jv{u{r) - üz(r)) • Vvdx dr
Q o a

t t

— / ƒ (#(r) ~ ~9Z{T)) drvdx + 7(T) (U(T) —üz(r)) vda dr

'T) - C^( r))) vda d r , Vt€(0 ,T) . (6.17)

For a.e. t e (0,T), this yields, with v = - (u(t) ~ üz(t)), by (2.ld, 6.2d),

- / (HX) - ^Z ) (u - üz) dx

= — {9(r) —9Z(T)) dr (u — üz) dx — I j / 7(7-) (u(r) —üz(r)) dr (u — üz) da
r \o /

- ƒ ƒ ((7(r) - 7Z(r)) tïz(r) - (c(r) - f (r)) ) dr (t* - ^ ) da

— K! I V (w(r) — ü (r)J d r • V (u — ü ) drc =: A2 4- ̂

ƒ ƒ
Q o

r o

A* (6.18)
Q 0

Owing to (6.2d, 2.ld), the generalized Hölder's inequality, (AP.l, 6.3, 6.16), we see that

dt.d£ < C13

o ' o

We have, by Hölder's inequality, (6.10), and Young's inequality,

u — uz

'UU

,^.(n„ii«-^ii^^i^ia+^ii«-^irf

(6.19)

(6.20)

" ƒ
t

J [U{T) U dr

(6.21)

(6.22)



1286 O. KLEIN

By integrating (6.18) from 0 to s and using (6.19-6.21), we obtain

2C 13
e-T u — u V j (U(T)-ÜZ(T)) dr

7 = Jl(r) («(r) - ïïz(r)) dr < ƒ ƒ ((A(X) - KxZ)) + (KXZ) - >?)) (u - ûz) dx dt
L2(r) o n

s t

JJ(èz-êz){u^z)dXdt+IJJ(ar)-ri,
on o r o

s / t

+ TC15 \Z\2 - f f O7ti?x2 / 7 M («M - « Z M) dr I da dt =:
J J ^\1\P)) \ J I
o r

(6.23)

Applying Poincaré's inequality and Hölder's inequality, we get a positive constant Ci6 such that

'16

S " S

J(u(T)-üz(r))dr < | vJ(u(r)-üz(r))dT \u(r) - üz(r)\\\ dr. (6.24)

Using (A2), (6.16, 6.4), Sobolev's embedding Theorem, Hölder's inequality, (6.5-6.7), we dérive

s

A6 + A7< Cv, j Ü(x - XZ) {u - ûz) jj, dt + C18 \Z\ \\u - nz'\[LH0T;L2m . (6.25)
0

Partial intégration wit h respect to time and applying Hölder's inequality resuit in

s

J{u(r)-üz(r))dT
0

J(u(r)-Üz(r))d7

As< \u I

C-TZ\
lL2(r) dt.

Because of the trace theorem, (6.3, 6.10), and Young's inequality, we observe

S t

J (u(r) - üz(r)) dr + \ ƒ ƒ (u(r) - üz (T)) dr
0 0

Cl9\Z\2 (6.26)

In the light of Hölder's inequality and (A3), we see

S l

A9 < C20 ƒ -j= J 7(r) (ti(r) - üZ(r)) dt . (6.27)
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Hence, we get, by using Hölder's inequality, (6.23-6.27), and Young's inequality,

2

^f j(u(r)-uz(r))àr +^-
0 H1^) 0

2

i | k - ^ | | 2 3 + l l ö - r i i )dt0
co

0

àt+l ==J-y(T){u(T)-üz{r))dT

<C17 f \\(x - xZ) (u - ü ^ dt +C18\Z\\\u-üz
L2(0,T;L2(Q))

+ \J J(u(r)-üz(r))dT
0 0

+ (Ci9 + TC15) \Z\2 + C20 J -j= J 7(r) (u(r) - üz(r)) dr dt .

Now, estimâtes for x will be derived. Subtracting (6.2f) from (2.If), we obtain that

Testing this with x~XZ a n d recalling (A3), (2.1g, 6.2g), we end up with

a.e. in

n

< ƒ (a'(X) - ^(xZ,XZ)) (X - XZ) àx - ƒ - X.Z)

We have

1287

(6.28)

(6.29)

(6.30)

(6.31)

Using (6.30), (A6, A2), (6.16, 6.4), Sobolev's embedding Theorem, Hölder's inequality, (6.6), and Young's
inequality, we conclude

= ƒ (a'(X) - a'(xZ)) (x - XZ) àx + ƒ
a n

- XZ)

<C2i llx - XZ||o + C22 \Z\2 a.e. in (0, T). (6.32)
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In the light of (6.30), (A6), the generalized Hölder's inequality, (A2), (6.16, 6.3, 6.4). Sobolev's embedding
Theorem, (6.6), and Young's inequality, we see that

u = - f(x'(x) (« - üz) + (A'(x) - X'(xZ)) üz) (x ~ XZ)
n V J

z (x - xz) dx

<C23 II (u - üz) (X -xZ) ||x \Z\2 . (6.33)

Combining (6.30-6.33), integrating in time, using (A3), (2.1h, 6.2h, 6.11, 6.6), and adding the resulting estimate
to (6.28), we get

4-

J{u(r)-üz(r))dT
o

?/

+ C26 J(\\u-Ü*

u — u d * + -

\9-r

dr

dt

( u ( r ) " ^ ( r ) ) d T d t *.)ƒ!*- ;Z||2
dt

C
20

s t

- i = /7(r) («(r) -üz(r)) dr
7(«)

o ' w o

dt

with

s

A12 : = ( C 1 7 + C 2 3 ) ƒ II(x - XZ) {u - ü z ) \ \ x d t .

Using Hölder's inequality, Young's inequality, and the Gagliardo-Nirenberg inequality, we obtain

(6.34)

Hence, (6.34), GronwalPs lemma, and (A3) yield that (6.14) is satisfied. Combining this with (6.16, 6.3), we
deduce that (6.15) is satisfied. D
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6.3. Proof of Theorem 2.2

Proof. Thanks to the estimâtes (6.3, 6.4), Sobolev's embedding Theorem, and compactness (see, e.g. Props. 23.7,
23.19, Prob. 23.12 in [31]), we get (M,x ,£ , A*) nilfilling (2,1b,c), (2.8-2.10), and

such that we have, for some subsequence with \Z\ —> 0, the convergences (2.11-2.19), and

Az —> À* weakly-star in WltOO(0,T; L2(tt)). (6.35)

We obtain the convergences (2.11-2.19) for the whole séquence, if we can show that (0, it, x>0 is the unique
solution to the Penrose-Fife system (PF). Hence, we need only to prove this, to finish the proof of Theorem 2.2.

Thanks to the convergences for xZ m (2.17, 6.4), the Aubin compactness lemma (see, e.g. p. 58 in [24]), and
(6.6), we also get

X, XZ (6.36)X" —> X, X" —> X, X —> X strongly in L2(0, T; 1

Hence, aft er possibly extract ing a further subsequence, we have

XZ —» X, XZ —• X a.e. in fiT-

This yields, thanks to (A2, A6), (6.4), and the Lebesgue dominated convergence theorem, that

A(xZ) ~ ^ A(x), A^(xZ,XZ) —• A'(X)Ï
 ad(xZiXZ) —* °"'(x) strongly in L2(QT). (6.37)

Thus, (6.35, 6.6, 6.7) yield that À* = A(x) a.e. on ÜT. Hence, using (2.11-2.19, 6.35-6.37, 6.3-6.10), we can pass
to the limit in (6.2a-6.2h) and obtain that (0,u, x , 0 is a solution to the Penrose-Fife system (PF). Details
can be found in Section 8 of [16]. It remains to show that this solution is unique.

Let (#*,££*, x*»£*) be any solution to the Penrose-Fife system (PF). Since we can apply Lemma 6.3 for this
solution, using (6.15) and the convergences (2.11-2.18) yields that

1/ 1/ , (X (Jb, ^ ^ C t . C 111 u t j

Comparing the terms in (2.1f), we see that the two solutions coincide.

6.4. Proof of Theorem 2.3

Proof. Thanks to (2.ld, 6.2d), Hölder's inequality, (2.8, 2.9, 6.3), we have

— 7. l|2

D

\u u i < C29
U — UZ

L2(0,T;L2(n))

Moreover, we have x~XZ ^ ^([0, T]; L2(n)), because of (6.2b, 2.1b). Hence, we obtain from (6.14) and Young's
inequality that

max
0<s<T

s

J{u(r)~ûz(r))dT + max
0<s<T

s

Jj(r)(u(r)-Üz(r))dr
2C:29

u — u

c,
1 7I|2

29 \x-r . (6.38)
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Therefore, by comparing the terms in (6.17), and using (6.10, 6.3), we get

IL (e - 0z) + X(x) - Xz\\2 < Csl \Z\2 . (6.39)

Now, (A2), (6.16, 6.4, 6.6, 6.7), L2(ü) c H1^)*, (6.38, 6.2a, 2.1a) yield that

2
?r. (6-40)

Combining this with (6.38, 6.5), we see that (2.20) is satisfied. D

I wish to thank the European Science Foundation programme on Mathematical Treatment of Free Boundary Problems
for support ing this research with a feîlowship held at the University of Pavia. My thanks are due to Prof. Pierluigi Colli
and Prof. Giuseppe Savaré for various fruitful discussions. Moreover, I thank the référées for their valuable comments,
especially for pointing out a way of improving the estimate in Lemma 4.9, such that one can prove the linear order of
the error estimate in Theorem 2.3 for all admissible choices for \'d. I was able to prove this linear error order for X'd = À*
with À* as in (2.5), but in the gênerai case my error estimate was only nearly linear.

A. APPENDIX

For convenience, we list some inequalities and equalities used throughout this paper.

Lemma AP.l (Young's inequality). For a > 0, b > 0, a > 0, p > 1, q :— p/(p — 1), it holds

ab < ~ap + lbq, ab < - o - ^ - ^ a * + -abq,
p q p q

jf— J ap + aW, V0 < 5 < 1.

Lemma AP.2 (Generalized Hölder's inequality). For a bounded, open domain Q C RN with N G N, p,Pi,P2,
p3 e [l,oo], A e LPl(Q), h e L^{Q)} and f3 e LP*(tt) such that

1 1 1 1
— + — + — = -,
Pi P2 PS P

we have fi • ƒ2 • ƒ3 G Lp(ft) and

II/l * h '

Thanks to Sobolev's embedding Theorem, we have:

Lemma AP.3. For a bounded, open domain Q C RN with N e {2,3} and Lipschüz boundary, there is a
positive constant C such that

\v\P\\LÏ ( n ) = | | < 6 ( n ) < C* \\vfHHU), V« € H1^), p G (0,6]. (AP.l)
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The following classical elliptic estimate can be found in Remark 9.3d of [1].

L e m m a AP.4. For a bounded, open domain Q, C RN with N G N and dft smooth there is a positive constant
C such that

f < C (\\Av\\2
L2{Q) + | | | ^ | 2 + \\v\\2

L2{n)) , Vt; G H2(Q).
\ l l a n l l j ï ( r ) /

In particular, for ail v G H2{0) with dv/dn = 0 a.e. on V,

The following version of the Gagliardo-Nirenberg inequality is a special case of those considered in
Theorem 1.1.4iiof [32].

Lemma AP.5. Let fi c RN with N e {2,3} be a bounded, open domain with d£l smooth. Let 2 < p < 6 be
given.and a := 3/2 — 3/p, Then there is a positive constant C such that

\\u\ < C \\u\\%HQ) WuWl^ , | |w| |Lp ( n ) < C \\uLP{n) < C \\u\\%HQ)

2, then the first estimate is also satisfied for a = 1 — 2/p.

Elementary calculations lead to:

Lemma AP.6. For n G N, a o , a i , . . . , a n , &o, &i, -. . }bn G R, we have

= (è^lfè^-E^+iE0*' (AP-2)

n n—l

2j<2i(6i — h-i) = anbn — aibo — 2_^ (GÎ+I — a*) bi. (AP.4)
i=\ i=l

L e m m a A P . 7 . Let H be a Hubert space with scalar-product {•, -)H and norm \\-\\H. Then we have

\ Ï / - " o II \\H o II Hiï 9 'I IIH" ' ' \ • J
ZJ Li LJ

The next lemma follows from elementary analysis.

Lemma AP.8. Let a, b > 0 be given. Then there exists a constant C > 07 such that

- s + 6|ln$| < as- 61ns + C, Vs > 0.
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