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NUMERICAL ANALYSIS OF COUPLING FOR A KINETIC EQUATION

MOULAY TlDRIRI1

Abstract. In this paper we introducé a coupled Systems of kinetic équations for the linearized
Carleman model. We then study the existence theory and the asymptotic behaviour of the result-
ing coupled problem. In order to solve the coupled problem we propose to use the time marching
algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results con-
firming the theory are then presented.

AMS Subject Classification. 35Q35, 35L50, 65M12, 82B40, 76P05.

Received; January 26, 1999- Revised: March 4, 1999.

1. INTRODUCTION

The coupling of kinetic équations and their hydrodynamic limits was introduced and studied in [3,12] see
also [4,5,8-11,13]. This approach was introduced in order to solve several difnculties that occur at the interface
between fluid mechanics and kinetic theory. Because of the practical importance of these méthodologies, the
establishment of their mathematical foundations is of crucial importance. The mathematical theory of such
coupling started in [6,7,12], where the coupling of two models of hydrodynamical type is considered. In [15],
the author provided an analysis of the coupling of two models of kinetic type. In this paper we shall further
study the coupling of kinetic équations for the linearized Carleman model. In particular, we shall study the
existence theory and the asymptotic behaviour of the resulting coupled Systems. To solve the coupled problem,
we propose to use the time marching algorithm also introduced in [6,7,12-14], We shall then establish the
convergence theory for the resulting algorithm. Finally, we provide numerical results confirming the above
mentioned mathematical results.

We consider in this paper the following linearized Carleman system [1].

-^ + -^ = a{v-u) on ]0,l[, (1)

i t ~ û = a{u~v) on]0'1[' (2)

u(0,-) = uo, v(0y-)=VQ, (3)

u{t,Q)=g(t), v(t,l)

where t e R+, x G [0,1] and u(£, x), v(t, x) are fonctions of x which represent probability densities for particles
moving in the positive and négative x — direction, respectively. a is a positive constant and g(t) and h(t) are
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two nonnegative functions. This model describes a random walk in one dimension. System (1-4) has a unique
strong solution.

The steady state problem corresponding to équations (1-4) is

u' = a(v -u) on ]0,l[, (5)

-v' = a(u-v) on ]0,l[, (6)

u(0) = <?, v(l) = h. (7)

The coupled strategy of [6,7,12-14] applied to System (1-4) leads to the following coupled Systems

^ + « a K - ^ ) on]0,M, (8)

~dt ~ ~d^ = a(ui ~ u i ) on ]0,/ii[, (9)

) = uio, (10)

, 0) = g(t), vi(t, hx) = v2{tJ tu), (11)

and

U2(0, ')=U20i V2(0 , - )=V20Ï

(15)

where 0 < h± < 1. Notice that problems (8—11, 12-15) are only coupled by their boundary conditions. They
can be solved by two independent solution techniques.

In Section 2 and 3, we shall state and prove results about the existence theory and asymptotic behaviour of
the coupled Systems. In Section 4, we shall study the convergence properties of the time marching algorithm
applied to the coupled problem. Finally, in Section 5, we present a numerical study of the resulting algorithm.

2. EXISTENCE THEORY

In this section, we shall study the existence of a solution for the coupled problem introduced in the previous
section. We shall work in the Hilbert space

X = (L2[0,h1])2x(L2[h1,l})2,

with the following norm

The main resuit of this section is the following

Theorem 2.1. Assume that (uio,^10)^20,^20) £ X, then the coupled problem (8-15) has a unique strong
solution (1*1,̂ 1,1*2,̂ 2)-
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We shall give the proof of this theorem for the homogeneous boundary conditions: g(i) = 0 and h(t) = 0.
By a Standard argument the proof in the nonhomogeneous case can be reduced to the homogeneous case.

We introducé an operator A on X as follows

( w[ + a(w\ — w2) \
-w2 +a(w2 —

G X\w[, w2 G L2[0,hi],W3, and W € L2[hul] 1
0, (wi -w 3 ) (^ i ) = 0 and (w2 - wA)(hx) = 0 J '

It is clear that D(A) is dense in X. We shall first, prove that the coupled problem has a unique solution in D{A).
This will be a conséquence of the following theorem which establishes that the operator — A is the infinitésimal
generator of a contraction semigroup of class C°.

Theorem 2.2. The operator —A is the infinitésimal generator of a contraction semigroup of class C° :
); t>0}.

Remark 1. As a conséquence of Theorem (2.2) the existence theory is established.

Proof To prove Theorem (2.2), we shall use the following result of Hille-Phillips [2].

Theorem 2.3. Let T be an unbounded operator with domain D(T) dense in the Hubert space X. Then T is
the infinitésimal generator of a contraction semigroup of class C° if and only if

(i) T is dissipative;
(ii) the range of D(T) by I — T is equal tô X.

Let T — —A, where A is the unbounded operator defined in (16). Let w be an element of D(A). T satisfies

(Tw, w) = — (Aw, w)

= / (~w[ + a(w2 — wi))w± -f- / (wf
2 + a(wi — w2))w2 + / (—^3 + a(iü4 — w^))ws

JO Jo Jhx

(wf
4 H- a(w3 - w4))w4

-a f \Wl-w2)
2-a f (w3-w4)

2. (17)
Jo Jhx

To obtain the last equality, we have used the boundary conditions. Since a > 0, we have (Tu,u) < 0 and — A
is dissipative.

Next, we show that the range of D{T) by I — T is equal to X. Let f E X and consider the problem of finding
u e D(T) such that

(I-T)w = f7 (18)

which corresponds to finding w £ D(T) such that

(19)

(20)

(21)

(22)

w[ 4 (a + l)u

-log 4- (a 4 l)u

w3 4 (a + l)u
-W4 + (a 4 l )u

»i — aw2

12 - awi

?3 - au>4

?4 — aw;3

= fu
= ƒ2,

= /3,

= u
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By a density argument we may assume that / i , /2, ƒ3, and ƒ4 are continuons. By elementary methods we
obtain the gênerai solution of System (19-20). Similarly, we obtain the gênerai solution of System (21-22). By
using the boundary conditions we conclude that problem (18) has a unique solution. The use of Theorem 2.3
concludes the proof of the theorem.

3. ASYMPTOTIC ANALYSIS OF THE COUPLED SYSTEMS

The main resuit of this section is

Theorem 3.1. Assume that «10,̂ 10 £ £2[0, fti] and u2o^2O € L2[hi,ï\, then the solution of the coupled
problem (8-15) converges as t tends to +00 to the solution o f the steady problem (5-7).

Proof. As in the previous section, without loss of generality, we may assume that g = g(t) = 0 and h — h{i) = 0.
Let (lis, vs) dénote the solution of the steady problem (5-7). Let ü and v be defined as follows

ü — u\ — us and v = v 1 — vs on ]0, fti[,
ü = U2 — us and v = V2 — vs on ]/ii, 1[,

where (^1,^1^2,^2) is the solution of the coupled problem (8-15). Then we have

^ ^ ^ a f r - T h ) on ]0,/n[, (23)

-ÖT - - Q ^ = a ( ü i - ü i ) on ]0,/ii[, (24)

«i(0, •)=wio, üi(O,-)=uio, (25)
üi(t, 0) = 0, thfo /ii) = Ü2(«, /ü), (26)

and

]h l 9 l [ , (28)

) = ^20, (29)
Û2(*, h±) = ûi(*, /ii), îi2(t, 1) = 0. (30)

Let w = (^1,^2,^3,^4) — (WI,VI,Ü2,Ü*2)- Let (fi and £̂2 be two positive functions independent of t to
be precised later. Multiplying équations (23, 24) and (27, 28) respectively by <piW\, tpiWi and
integrating over [0, h\] respectively [/ii, 1], and using Cauchy-Schwarz inequality, we obtain

/
o

ti;ï(/ii) - ¥>i(0)u;?(0) - ^2(^1)^2(^1) + ^2(0)^2(0) < 0 (31)

and

_t pi pi pi

— ƒ (^1^3+^2^1)+ / ( -^1* +û(</?l -¥?2))^3 + ƒ
d * Jhi Ai Ai

/ ƒ
Ai Ai

i 2 w2(fci) < 0. (32)
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Assuming that (fi(hx) = </?2(̂ i)5 and using the boundary conditions, we obtain

d fhl o o fhl o fhl

— I [(pxW^ + (P2W2) ~h ƒ ( — tpix ~\~ °>vPl — ̂ 2 ) ) ^ ! H~ / (^2x ~l~ a ( ^ 2 — ^ l ) ) ^ 2
°-t Jo iO JO

d f1
 2 2 f1

 2 f1
 2

dt A x
 1 3 2 4 Jhl

 1X X 3 A i 2 4 ~
Now consider the following System of équations

where fc is a positive constant. The solution of this system is given by

+ (/ii - a;)fc - ak(hi - x)
= tpi(hx)-\-(x — hi)k — ak(hi ~ x)2.

Choosing for example (fi(hi) — 2ah\k + 2ftife + (3 -f a)k, we obtain

where K is a positive constant independent of h\.
Combining (33, 34, 35), we then obtain

ce"coi

And this concludes the proof of Theorem 3.1.

= fc on ]0,/ii[ (resp. on ]/ii,l[), (34)

= k on ]0,/ii[ (resp. on ]/ii,l[), (35)

(36)

k < <pi(x) < K Vx e [0,/&i] (resp. on [/ii, 1]), (37)

k <ip2(x) < K Vx e [0,/tx] (resp. on [hu 1]), (38)

d p hi /*1 {*h\

I o 0 1 o o i o o 1

dt Jo
 1 2 A x

 2 Jo X 2 1 2 4 - •

Using the properties of ipi and if2 we finally obtain

(40)
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4. NUMERICAL ANALYSIS OF THE COUPLING

To solve the coupled problem introduced in previous sections, we propose to use the time marching algorithm
of [6,7,12-14]. In this section we shall study the convergence properties of the algorithm.

A* + ^ = a « < ) Qn]0,M,

A - ^ . a ^ - O on }0M, (42)

< + 1 (0 ) = 0, <+ 1( / i i) = v^+1(ht), (43)

J + to =a(Tg+1"u?+1) onlhlll[' (44)

onKl[, (45)

) = 0, (46)

and the initial conditions

U? = WlO, V? = ̂ 10, 1 ^ = W20, ^2 = ̂ 20- (47)

Hère, without loss of generality, we have assumed that g = g(t) = 0 and h — h(t) = 0.
The convergence of the algorithm (41-47) is stated in the following theorem.

Theorem 4.1. The algorithm (41-4V converges as n tends to oo.

The proof of this theorem wiü be given in Section 4.2.

4.1. The time independent case

If we introducé the coupled Systems directly for the steady problem and we apply the time marching algorithm,
we obtain

) on ]0,/ii[, (48)

. »«,-. V1 ) on ]0,/ii[, (49)
ux
a(0) = 0, < + 1 (h i ) = ^2+1(^i)5 (50)

on )h!, 1[, (51)

" t o = t t W + 1 " " 2 " + 1 ) on]hull (52)

t£+ 1(/n)=u?(fti) , < + 1 ( l ) = 0 , (53)

tt° = Uio, V° = Uio, U° = W20, «2 - ^20- (54)

The following theorem states the convergence of the algorithm (48-54).
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Theorem 4.2. The algorithm (48-54) converges for any 0 < h± < 1.

Proof. We first set

4 n ) ( /* i )=7 ( n ) , v{n)(h1)=6^n\ (55)

The algorithm (48-54) converges if 7 ^ —> 0 and ö^ —> 0 as n —+ 00. The solution of problem (48-50) is
given by

^ 1 ^ * > Ö S i + «>. (56)

The solution of problem (51-53) is given by

< 5 7 )

The solution of the steady problem (5-6) with boundary conditions i*(0) = 0 and t ; ( l ) = 0 i s t i = 0 and v = 0.
Using the coupling boundary conditions, we obtain

= v[1)(h1)=v£\h1)

On the other hand using the coupling boundary conditions, we obtain

ahi q(l - fti)
7

a(l - /ii) afei

Hence, the itérative process is completely determined

(n+l) = l jMlL>)
f 1 + a/i l + a ( l f o ) '

= 5

l + a( l - fe i ) 1 + ahi
From the last itérative process, we clearly deduce the convergence of the algorithm. And this concludes the
proof of Theorem 4.2.

4.2. Analysis of the gênerai algorithm

We shall now establish the convergence properties of the algorithm (41—47). More precisely, we shall give the
proof of Theorem 4.1.
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Proof of Theorem 4.1. Using the notation u™+l = m, v™+l

x;2î Ü2 = ƒ2 Î v% = g2} the algorithm (41-47) becomes

+ i^ — a^i + cfi on ]0, /ii[,
— v[ = aux H- c^i on ]0, /ii[, (58)

= 0 ,

bu2 + u2 = 0W2 + c/2 on ]/ii, 1[,
6̂ 2 — v'2 = au2 + ĉ 2 on ]Ai, 1[, (59)

with the initial conditions (47). Hère, we have used the notation b = a + 1/At and c = 1/At.
Let </?i, y?2, <̂ 3 and y?4 be four positive functions bounded below and above to be precised later. Multiplying

équations (58^ 59) respectively by <pi, <p2, (p% and 994, integrating respectively over [0, h±] and [/ii,l] and using
Cauchy-Schwarz inequality we obtain

fh\

and
> 1 a + c 1 a 9

fh\a + c 1 , a . 2 1, 2 2x/,, c /*hl/ ,2
y t ^ " ^ 2 + 2^2 ~ 2^^^ + 2 ^ 1 % ~ (p2Vl>° - 2 y ^ ^

(60)

(61)

Using the boundaiy conditions and conibiniiig (60, 61), we oblain

c 1 , a . 9 fhl
ra + c 1 , a , 2 / l l

ra + c 1 . a , o /*1
ra + c

l [ h \ ? Î % [ \ ï â \ f U h 1 ) . (62)

Now our objective is to find 71 and 72 both larger than c/2 such that the solutions <p\ and (p2 of the following
System

^ ^ ^ = 7 V on ]0,/ii[, (63)

<P + ^ ^ = 7 ^ on ]0,/ii[, (64)

with the boundary conditions (fi(hi) and ^2(^1) fixed and positive to be precised later, are both positive
bounded below and above by positive constants which are independent of both c and h±. By choosing 71 =
72 = (c + e)/2 and setting À = a — e where e is a small positive parameter, we find

<P! - - e " A V , tp2 - e~Xxv (65)
a

ajx + c2sinV'€(A + a)x), (66)
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with Ci and c2 given by

C2 . l

Here, ai, a2, &i and 62 are given by

ai = e 1cosve(^ + a)h>i, &2 =

bi = Aai — v e(A + 0)0,2

b2
 = Aa2 + y6(A + a)ai.

Assuming that the boundary conditions satisfy

W/ii) (67)
(X

with ö a small positive parameter, we find that ei, c2, y?i and cp2 are positive. Moreover, they satisfy the
following inequalities

C1ip2{h1) <

where Ci, C2, C3 and C4 are positive constants. Using (67) and with an appropriate choice for (£>2(/ii), we
conclude that for e and ö small (p\ and </?2 axe bounded below and above by positive constants which are
independent of c and h\.

We shall now find 73 and 74 both larger than c/2 such that the solutions tp^ and <p^ of the following system

o n ]fti' 1I ' (68)

+ o n ]fti» 1t' (6 9)

^ i ( / i i ) , ¥?4(hi) = ^2(/ii), (70)

are positive bounded below and above by positive constants which are independent of both c and h\. We shall
choose 73 =74 = (c + e)/2 where e is a small positive parameter. Setting A = a — e, we find

<p3 = -e-Xxv', <p4 = e~Xxv (71)
a

where v has similar form as in (66).
Proceeding as for <pi and (p2 and using the boundary conditions (70), we find that for e and 5 small ips and

994 are both positive bounded below and above by positive constants which are independent of both c and h\.
In fact, we may assume that e and ô introduced here are the same as those introduced for the construction of
<pi and </?2- We then have 71 = 72 = 73 = 74.
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Convergence history

0 20 40 60 80 100 120 140 160 180 200

FIGURE 1. Loo norm of the error on [0, hx) (—) and [hi,l] (- -)•

Using (63, 64, 68, 69), (62) becomes

71

Using the boundary conditions in (58, 70) and the positivity of ip2 and ^3, we obtain

71

phi

/
JQ

/
Jhx

(72)

(73)

Because 71 > c/2 and the f act that J is small, the operator in (73) is contractant and therefore

Jo Ai 27i

converges to 0. Because of our special construction of the functions <pi, y?2î ^3 &nd tp^, we conclude that

converges to 0. And this concludes the proof of Theorem 4.1.
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Convergence history
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0 50 100 150 200 250 300 350 400

FIGURE 2. Convergence history curves for At = 1CT2 (—), At = 10"1 (- -) and At = 1 (++).

Convergence history

FIGURE 3. Convergence history curves for At = 10 (—), At = IO2 (- -), At = IO3 (++),
At = 104 (**) and At = 105 (•••)•

5. NUMERICAL STUDY OF THE COUPLING

In this section we shall study numerically the convergence properties of the algorithm (41-47). This algorithm
corresponds to the following Systems

1+1

At At

At

àu%+1 _
dx

dx



1132 M TIDRIRI

Convergence history

100 150 200 250 300 350 400

FIGURE 4. Convergence history curves for h\ = 0.0625 (—), h\ = 0.125 (- -) and h\ = 0.25 (•

10 1

10 2

ro
r

> - *

S

m 5

Convergence history

;

\

50 100 150 200 250 300 350 400
itérations

FIGURE 5. Convergence history curves for h± = 0.5 (—), h\ = 0.75 ( ) and h\ = 0.95 (•••)•

and the initial conditions

For the discretization in space, we consider an equally spaced subdivision of [0, h\} into subintervals [a^a^+i],
XQ = 0,, x% = x%-i + Axt, % = 1, • • • , m , where ni is the number of subdivisions and Axz = h\ju\. We also
subdivide [fti, 1] into equally spaced subdivision [y%i 2/t+i], yo ~ /ii, y% = y%-\ + A ^ , z = 1, • • * , ri2, where n2 is
the number of subdivisions and Ayt = (1 — h\)/ri2-
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Convergence history
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1 15 2 25 3 35 4 45 5 55 6

F I G U R E 6 . C o n v e r g e n c e h i s t o r y c u r v e s for h \ = 0 . 0 6 2 5 ( — ) , h x — 0 . 1 2 5 ( - - ) a n d hi = 0 . 2 5 ( • • • ) •

Convergence history

1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6

FIGURE 7. Convergence history curves for hi = 0.5 (—), h\ — 0.75 ( ) and h\ = 0.95 (•••)•

We then use an upwinded différence met ho d to approximate the space derivatives appearing in the aigorithm.
For example, for the first derivative appearing in the first équation in the aigorithm, we use the approximation

dx [Xl) Âx,

The other derivatives in the coupled problem are approximated similarly. The two problems are coupled only
through their boundary conditions. The full discretization of each of these two problems leads to an algebraic
system that we solve by the incomplete factorization method.
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To test the convergence properties of the algorithm, we take a = 1, h\ — 1/2, g ~ 1/2, and h — 1. We
initialize the coupling algorithm by 0 on the whole interval [0,1]. In Figure. 1, we show the convergence history
of the algorithm for At — 0.025. In this figure, we present the Loo norm of the errors ||u" — U||L°°[O,AII]
IIU2 ~~ UIIL°°[/II,I]

 v^rsus the itérations. The exact solution of the steady problem is given by

ulx) = u(0) — —ax, v(x) = u(x)
1 + a 1 + a

The plotting (not shown here) of the converged solution u computed by the coupling algorithm and the exact
solution u of the steady Carleman équations shows no différence between these two solutions.

These numerical results clearly show that the algorithm converges and it converges to the solution of the
steady Carleman équations.

In Figures 2 and 3 we show the convergence history (\\ui — |̂|i,«>[o,/ii] ) of the algorithm for a fixed hi = 0.5
and various values of At. In Figures 4 and 5 we show the convergence history (\\ui — W||L°°[O,/II] ) °f the
algorithm for a fixed At = 10~2 and various values of h1. In Figures 6 and 7, we show the convergence history
{\\ui — UWLOO^Q^^ ) of the algorithm for a fixed At = 105 and various values of h\. These results show that the
algorithm converges in accordance with the theory established in Section 4.
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