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WEAK AND CLASSICAL SOLUTIONS OF EQUATIONS

OF MOTION FOR THIRD GRADE FLUIDS

JEAN MARIE BERNARD1

Abstract. This paper shows that the décomposition method with special basis, mtroduced by
Cioranescu and Ouazar, allows one to prove global existence m time of the weak solution for the
third grade fluids, m three dimensions, with small data Contrary to the special case where \ai +0:2! <
(24up)1^2, studied by Amrouche and Cioranescu, the H1 norm of the velocity is not bounded for ail
data This fact, which led others to think, m contradiction to this paper, that the method of dé-
composition could not apply to the gênerai case of third grade, comphcates substantially the proof
of the existence of the solution We also prove further regularity results by a method similar to that
of Cioranescu and Girault for second grade fluids This extension to the third grade fluids is not
straightforward, because of a transport équation which is much more complex

Résumé. Dans cet article, on montre que la méthode de décomposition avec base spéciale introduite
par Cioranescu et Ouazar, permet de démont rei l'existence globale en temps de la solution faible pour
les fluides de grade trois, en dimension trois, avec des données petites Contrairement au cas particulier
où \ai + 0:2] < (24^/3)1^2, étudié par Amrouche et Cioranescu, la norme H1 de la vitesse n'est pas
majorée pour toute donnée Ce fait, qui conduisait à penser, en contradiction avec cet article, que
la méthode de décomposition ne pouvait pas s'appliquer au cas général du grade trois, complique
substantiellement la démonstration d'existence de la solution On établit des résultats de régulante
par une méthode similaire à celle de Cioranescu et Girault pour des fluides
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1 INTRODUCTION

The most gênerai constitutive law for the fluids of grade 3 is

T = -pi + vAx + axA2 + a2A\ + 0±A3 + P2(A1A2 + A2AX)

(cf [13]) where T is the stress tensor, p dénotes the pressure (a scalar function), I the unit matrix and An the
nth Rivlm-Encksen tensor given recursively by

Ax =L + LT with Lt3 = %±,
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where u is the velocity field and, for n > 2,

dt

The constant v is the kinematic viscosity and a», Pi and (3 are the normal stress moduli. These constants are
not arbitrary. More precisely (cf. [9]) the following result holds: if the Clausius-Duhem inequality is satisfied
and the free energy is minimum at equilibrium then

v > 0, 0i = p2 = 0, (3 > 0, ai > 0.

Wit h these restrictions, we can express T in the form:

T = -pI + i/Ai + a i ( ~ ^ i + ^iW - WAi) + («i + az)Ai + i8|^i|2^i»

where

V-i(£-L').

The incompressibility requires that:

divu = 0. (1.2)

The dynamical équation for a fluid of thïrd grade is of the form:

^ = divT + f. (1.3)

We can verify that:

div Af = A(u.Vu) — 2u.V(Au) +curl(Au) x u + V f u.Au+ -|Ai

where

|Ai|2=tr(AiAf).

Therefore

divT = -Vp+i/Au + ai—— + (QI + a2)(A(u.yu) - 2u.V(Au))

u) x u +V(u.Au+ijAil2)^ +/8div(|Ai|2Ai). (1.4)

On using (1.4) and the relation:

du dn , r-r /1.
- = -+curluxu + V(-|

from équation (1.3), we dérive

— - v Au - ai ^- Au + curl(u - (2ai + a2) Au) x u - (ai + a2) A(u. Vu) + 2(ai + a2)u. V( Au) - /3 div(jAx|
2Ai)

+ Vp - (2ax + a2)V(u.Au + \\AX\2) + \V(|u|2) = f. (1.5)
4 ^
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This équation of motion is completed by the state équation (1.2), some initial data for the velocity and a
homogeneous condition for the velocity on the boundary of the domain.

Problem (1.5) is difncult because its nonlinear terms involve third order derivatives. In analogy with the
Euler équation, it is convenient to introducé the vorticity u? = curlu. Taking the curl of équation (1.3), we
obtain roughly the following transport équation:

— (o; - ai Au?) H (cv - ai Au;) + u.V(u? - ai Au?) + M(u) = curlf H curlu, (1.6)
CÏ OL \ a i

where M(u) collects lower order nonlinear terms that we shall specify in Section 2.
Fluids of third grade have been studied by Amrouche in [1] and Amrouche and Cioranescu in [3]. They used

a special method, which had been used, for the first time, by Cioranescu and Ouazar in [6,7] to solve a problem
of second grade fluids. This is a Galerkin's method with the special basis of eigenfunctions corresponding to
the scalar product associated with the operator curl(u — ai Au). This basis allowed them to obtain, from the
discrete Galerkin problem, a discrete version of the transport équation (1.6), from which they recovered sharp
energy estimâtes. In three dimensions, they obtained existence and uniqueness of the variational solution during
some time interval, without restriction on the data, but under the supplementary condition

K + a 2 | < (24I//3)1'2. (1.7)

On the other hand, they proved global existence in time, under some restrictions on the data, but only in two
dimensions.

Recently, several authors such as Galdi et al. in [10], Bresch and Lemoine in [4], Sequeira and Videman
in [14] and Videman in [16] used another approach: each one decomposed the original System of équations in
their own way but all applied a Schauder fixed point argument. We think that these methods are less efficient
than the method of energy estimâtes of Cioranescu and Ouazar. On the one hand, this method is the only
one that gives the existence of solutions in dimension two for the second grade fluids, without restriction on
the size of the data. On the other hand, in three dimensions, if the two approaches prove the existence only
for sufficiently small data, the method of energy estimâtes leads to conditions of existence more précise, more
explicit and, with no doubt, less restrictive. The reason why this method may be better could be due to the
fact that, in those methods using a Schauder fixed point argument, the non-linear terms are placed unsubtly
on the right hand side, thus leading to lower-quality results.

The purpose of the present paper is to show that this method of décomposition allows one to prove global
existence in time of the weak solution of third grade fluids in three dimensions with small data, but without
assuming the condition (1.7) which gives a H1 bound of the velocity u for any data. Here, the H1 bound does
not follow directly from équation (1.3). Instead, the exponential decay with respect to time of the H1 norm of
the velocity is obtained by combining (1.3) with the transport équation (1.6), but only with small data. Next,
by a method similar to that of Cioranescu and Girault in [5] for the case ai + OL<I = 0 of second grade fluids,
we obtain regularity results but with severe complications, because of a transport équation which is much more
involved than in the simpler case ai -f ce2 = 0 of second grade fluids.

This paper is organized as follows. The problem and the spaces involved are described in Section 2. Section 3
is devoted to prove formai a priori estimâtes satisfied by smooth solutions of the problem and uniqueness of
the solution if it exists. Existence is established in Section 4 by applying Galerkin's method with a special
basis. The existence and uniqueness results are used in Section 5 to show additional regularity of the solution
when the data are also accordingly regular, whence the classical solution. Finally, in Section 6, we sketch the
non-simply-connected case.
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2. STATEMENT OF THE PROBLEM AND NOTATION

Let Cl be a bounded domain of R3, simply-connected, with a boundary F that is at least of class C2'1. We
dénote by n the unit normal vector to F, directed outside ft. By setting

p = p~ {2ax + a2) fu.Au + Jl^i N + £lu|2,

équation (1.5) simplifies and the system of équations we propose to solve is:
Find a vector-valued function u= (^ i , ^2,^3) and a scalar function p defined on fix]0,T[,

for some T > 0, satisfying:

d
— (u — ai Au) — i/Au -f- curl(u — (2ai + a2)Au) x u — (ai -f Q2)A(u.Vu)

+ 2(ai +a2)u.V(Au) -/?div(|i4i|2i4i) + Vp = f in fix]0,r[, (2.1)

divu = 0 in îîx]0,T[, (2.2)

with homogeneous Dirichlet boundary conditions:

u = 0 on Fx]0,T[, (2.3)

and initial data:

u(0) = u0 in fl. (2.4)

The parameters a i , v and j3 are given positive constants and the initial data u0 satisfies the compatibility
condition:

div uo = 0 in ft and uo = 0 on F. (2.5)

In order to set this problem int o adequate spaces, recall the définition of the following standard Sobolev spaces
(cf. [12]). For any multi-index k = (fei, fo, k$) with ki > 0, set |fe| = k\ + ki + A;3 and dénote

dkv =

Then for any integer m > 0 and number p with 1 < p < 00, we define:

W^^ift) -={ve Lp(ft); dkv e Lp(fl) for 1 < \k\ < m},

which is a Banach space equipped with the norm

|fc|=0 k

with the usual modification when p = 00. We dénote iJm(fi) = VKm'2(n).
For vector-valued functions v = (i>i, ̂ 2, •. . , ̂ AT), we use special norms: if 1 < p < 00, we set

l|v||z,P(n)" = II |v| | |Lp ( f2 ) î (2.6)
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where | . | is the Euclidian norm in RN. To simplify, we shall dénote ||v||LP(n) instead of ||v||jLP(fi)iv. We consider
the matrices 3 x 3 as éléments of Lp(Çt)g and we define their norms Lp by using (2.6) with N = 9. In the same
way, we define the norms of tensors.

We shall frequently use the scalar product of L2(fi)

(f,9) = f
Jn

the semi-norm of Hl(ü)

and the subspaces oï H1 {Q), L2(ü)3 and

H^(n) = {v£H1(ft)]v = 0 onT},

H(curl-Ü) = {v G L2(^)3;curl v G L2(fi)3},

V = {v e iï2(fi)3;div v - 0 in Q} •

The space V is equipped with the scalar product:

(u,v)v = (u,v) + Q I ( V U , Vv) (2.7)

and associated norm: ||v||v = (v, \)y .
Recall also the Poincaré Inequality, valid on any bounded domain: there exists a constant V such that

V^etfo1^), IMU'(n) < V\v\m{n). (2.8)

As far as dependence on time is concerned, for any number T > 0 , any Banach space X and any number r with
1 < r < oo, we define the space

( rT \1/r

Lr(0,T; X) = {v :]0,T[K+ X; v is measurable and I / \\v(t)\\r
x di 1 < oo},

equipped with the norm:

) y j
Following the approach of [5], we introducé the space:

|/2 = {vG V;curl(v - aiAv) G L2(Q)3}- (2.9)

We recall a lemma of [5].

Lemma 2.1. Let Cl be a bounded, simply-connected open set ofWL3 with a boundary T of class C2 '1. Then any
v m^2 belongs to H3(£ï)3 and there exists a constant C(a\) such that

Vv G y2, ||v||jT3(n) < C(ai)||curl(v - aiAv)| |La(n). (2-10)
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Furthermore, the constant C(a\) has the bound

C{ax) < ̂ ~V2, if ai > l or C( a i ) < - ^ , if ax < \ , (2.11)

where 7 is independent of ai.

Remark 2.2. The C2'1 regularity of F is necessary for v to belong to H3(ü)3.

Remark 2.3. The argument of Lemma 2.1 can be easily extended to prove that, for any integer m > 0, if F
is of class Cm + 2 ! l and v belongs to V with curl (v - ai Av) in üm(Q)3 , then v belongs to # m + 3 ( ^ ) 3 and of
course the imbedding is continuous.

According to Lemma 2.1, V2 is equipped with the scalar product:

(u, v)y2 = (curl(u - ai Au), curl(v - en Av)) (2.12)

and associated norm: ||v||y2 = (v,v){^2. Hence

Vv e V2, MHHQ) < CCaOIMIv,. (2.13)

We introducé the Sobolev constants C\ and C2 defined by:

( ) u) (2.14)
VveH^Çl), ||«||La(n) < C2\\v\\HHny (2-15)

Then we have with the norms defined by (2.6)

Vv e (H3(Q))N, ||Vv||Loo(n) < dllvHaad,) (2.16)

and using Holder's inequality:

Vv G (HHfï))", ||v||L4(n) < C2
3/4||v||H1(Q). (2.17)

Variational formulation

On the one hand, we introducé the trilinear form used in Euler and Navier-Stokes équations:

3

6(u;v,w)= V" / Uj^-Wi&K.

^Jn dxó

On the other hand, we need the following result.

Lemma 2.4. Let u be given in H3(Çl)3 and v in HQ(Q)3. We define the matrix A(v) by:

(A{v))ij = ~ + ̂ - , tbr i, j = 1,2,3. (2.18)

Then

)|2A(u),A(v)). (2.19)
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Proof. Applying Green's formula, we obtain

But

E dui duj dv
{d^ + 'dxi'~dxi 2 & ââ* 0x7 ^

Hence, (2.19) follows. •

We remark that A\ = A(u). Then, owing to the trilinear form b and the previous lemma, we propose the
following variational formulation of (2.1-2.5):

For f given in L2(0,T; tf(curl; fi)) n^°°(0,T; (L2(^))3) and u0 given in V2, find u in L°°(0,T;y2) with u'
in L2(0, T; V), such that

Vv G V (u',v) + ai(Vu',Vv) + i/(Vu,Vv) + (curl(u - (2ai + a2)Au) x u,v)

+(ai +a2)[(V(u.Vu), Vv) +26(u; Au,v)] + ^(|A(u)|2A(u), A(v)) = (f,v) (2.20)

with the initial condition (2.4).
Clearly, by restricting the set of solutions of (2.1-2.5) to L°°(0, T; V2) with the first derivative in L2(0, T; y),

this formulation is equivalent to (2.1-2.5).
As mentioned in the introduction, we shall obtain a transport équation by taking the curl of équation (2.1).

Before, we require the following technical results.

Lemma 2.5. Formally, we have

3

curl(u.Vv) = u.Vcurl v — curl v.Vu + divu curl v + \ J Vufc x Vi>fc. (2.21)
fe=i

Proof. We can verify this identity for each component. •

Lemma 2.6. We dénote Amj the jth column vector of the matrix A. Suppose that divv = 0. Formally, we
have

curl(div(]A(v)|2A(v))) = |^(v)|2A(curlv) + 2V(]A(v)|2).Vcurlv + B(v), (2.22)

where

B(v) = è [V(0^(Wv)l2)) x ^-*(v) - ^(l^(v)t2)V((curlv)*)] • (2-23)

Proof We can verify, using the identity: div(öv) = ödivv + Vö.v,

|2^l(v)) = |i(v)|2Av + J2 /-(l>l(v)!2)A.,fe(v). (2.24)
fe=i OXk
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Next, we have, owing mainly to the identity: curl(Öv) = #curlv + VÔ x v,

3 „

curl(|A(v)|2Av) = |A(v)|2A(curl v) + V(|A(v)|2).Vcurlv - ] T — (|A(v)|2)V((curl v)fc) (2.25)

and

3 f) 3 / f) \
curl(\ (|A(v)|2)A ,fc(v)) = V(|A(v)|2).Vcurlv + \ ^ V I (|^4(v)|2) ) x A ,fc(v). (2.26)

fe=i Xk fc=i \ Xk /

From (2.24, 2.25, 2.26), we dérive (2.22). D

Set u; = curlu. From Lemma 2.5 and divu = 0, it follows that:

3

curl(u.V(Au)) = u.V(Aa>) - Au;.Vu + ^ Vuk x V(Auk) (2.27)
fc=i

and

curl(A(u.Vu)) = Au.Vu; + u.V(Au;) - Au;.Vu - w.V(Au) + 2 V f—ïi.V-^- - ^ - V ^ ] . (2.28)
r-^ \OXk OXk OXk OXk J

Finally,

curl(curl(u — (2ai -+- a2)Au) x u) = u.V(u; — (2ai + a2)Au?) — (a; — (2ai + a2)Au;).Vu. (2.29)

Thus, we dérive formally from (2.27-2.29, 2.22) the following transport équation:

— ai Au;) + W7& — ui Aa;) + u.V(u; — ai Au;) — (u; — ai Au;).Vu — (ai + a2)Au.Vu;

-f — |^(u)|2(u; - aiAu;) - 2V(|A(u)|2).Vu;] = curlf + —curlu + ^-U(u)[2curlu. (2.30)
ai ai ai

This équation has to be interpreted in the sense of distributions, unless u(t) belongs to H4(ft)3.

3. A PRIORI ESTIMATES AND UNIQUENESS

The a priori estimâtes of this section are formai because they are derived for the exact solution of prob-
lem (2.20, 2.4), whose regularity is not known. However, in the next section, we shall apply these estimâtes
rigorously to the solution of the Galerkin approximation of problem (2.20), and we know from the onset that
this solution is sufficiently smooth.

Lemma 3.1. Suppose problem (2.20, 24) has a solution u in C°(05T; V2) with u' m L°°(0,T; V). Set

K K | + lai) ai
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Then this solution satisfies the followzng znequalztzes for all t %n [0, T]:

\\u(t)\\v < e~Klt

-K2 f e-K^-sï (H± - \\u(s)\\Va) HuOOIÎ ds, (3.1)

ƒ |j \~f*-\ ^ \ ^ / / | H £,4ff)1) ^^ — ~f-} \ || 0 j| V" ~" / II V / I I L ^ (Cl*) ) ~n~ ƒ l ~TS- II V / II *2 / II \ / I I V ƒ " \ /

Proof The choice v = u in (2.20), the anti-symmetry of 6, the relation (w x v, v) = 0 and the définition (2.7)
imply

+ a2)6(u(t) ;Au(t) ,u(t)) + p |A(u(£))| \\%^Q) = (f(t) ,u(t)). (3.3)

Observing that

we obtain

1 d 2
 v 2 P 4

Since v belongs to V2, we dérive by applications of Green's formula that

3 /* r-vQ 3

o v ;Av ,v ) = > / t;fc——--^-fzdx— > / ——————dx;
ƒ Q UO/l jUX ƒ Q C/O/-) L/1A/7 LfJjfç

hence

3 3

/BS ^f 2 ^
Then (2.16, 2.13, 3.4) imply

|6(u(i);Au(t),u(t))| < ||Vu(t)||Loo(n)|u(i)|^1(n) <
 i W V ^ i y ||u(t)||y2||u(t)Hv- (3.6)

Moreover, we have

V2
 2 i/ 2

By substituting into (3.5), simplifying by ||u(t)||v and using the constants K\ and K2> we obtain for all t in
[0,T]:

ut l̂  \ i\ 2 /
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Then (3.1) is derived by multiplying both sides of (3.8) by eKlt and integrating over [0,t]. At last, we obtain
(3.2) by integrating (3.8) over [0,t]. •

Remark 3.2. The term &(u(i); Au(i), u(£)) gives rise to the factor ||u(i)||y2 in the right-hand side of (3.1).
Therefore (3.1) alone does not give an estimate for ||u(t)||v- We shall complete (3.1) with an estimate derived
from the transport équation that will upbound simultaneously [|u(£)||v and ||u(t)||v"2 for small data.

Theorem 3.3. In addition to the assumptions of Lemma 3.1, suppose that curl(Au) belongs to L2(0, T; Hl(Q)3).
Then y(t) = ||u(£)||y2 satisfies the differential inequalüy in [0,T]:

v JO
| | ds)

where

C(ai,a2,/3) = -^(C(ai ,a;2))2 + /3(C(ai))3 ( 16Ci((3V/2 + 2)C2/2 + 2Ci) + ~~ ) (3.10)

with C(ai ,a2) = CiC(ofi) + |ax + a2 |(C(a1))2[(v /6+ 2(\/3
and i^i and ^2 a^e defined in Lemma 3.1.

Proof. To simplify, set z = ix> — aiAw. Then taking the scalar product of (2.30) with z gives:

(Vtifc(t) x VAUfc(t),z(t))]} - ^{2(V(|A(u(t))|2

^ | = (curl(f(t) + ^u(t)) ,z(t)) + ^(|A(u(t))|2curlu(t),z(t)). (3.11)

Considering that, for all u and w in L2(ü)3 and all v in W1*00^)3,

|b(u;v,w)| < ||u||L2(n)||Vv|]Loo(n)]|w||L2(n),

(2.16, 2.13) yield

\b(z(t);u(t)Mt))\ < l|Vu(t)|Uoo(n)||z(t)|||2(ft) <

Next, considering that for all u in L4(Q)3, v in W1'4(fi)3 and w in L2

|6(u;v,w)| < ||u||

(2.17, 2.13) gives

(3-13)



^

and

<

Considering that

by using Hölder, Cauchy-Schwarz, (2.17, 2.16, 2.13), we obtain

|(V(|A(u)|2).Vu,, z)| < 2||z|]L2(n)I| \A(u)\ \\L~{n

k,i=i

By expanding the two terms of B(u) and by using the same techniques, we have

3 o

^ x A.,k(u(t)),z(t))\ < 3 / 2

and

fe=i
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By similar argument, we obtain

V ë t f l (3.14)

(3.16)

(3.17)

1/2

(3.18)

(3-19)

(3.20)

Bounding the right side of (3.11) in the same way as (3.7) and collecting the inequalities (3.12-3.20), we dérive

(3.21)

Now, using the bound

|| |A(u(t))|curlu(t)||la(n) < \A(u(t))\ \\lHQ) + ai{C{ai))
3CÏ\\u(t)\\v,
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and setting y(t) = ||u(t)||^2ï (3.21) implies

y'(t) + —y{t) < - ^
Cfc-i

2)C2
3 / 2 \A{n(t)\ ||*

Finally, considering that y/y < 1/40 + 0, we obtain

!/'(') < ^ l %\

and we dérive (3.9) by substituting (3.1) in this inequality. D

In the absence of additional information on the solution u, it is clear from the differential inequality (3.9)
that we cannot prove global existence in time of u unless we show the uniform bound:

V* > 0, 0 < ylt) < min f —— —, ^ ) . (3.22)

Owing to the exponential decay of terms of (3.9), we shall prove that every continuous solution of (3.9) satisfies
(3.22) for small enough data.

Lemma 3.4. Let f helong to L2(R+;H(curl; f2)). If the data satisfy:

+ 8l/+3°l)Kl(\\M2v + ̂  H + ^ - H llcurlf (t)||ia(n) dt

<min ,-rk), (3.23)

where C(ai,a2,0) is defined by (SAO) and K\ and K% are defined as in Lemma 3.1, tken any continuous
solution of (3.9) with starting value y(0) = ||uo||y2 satisfies:

V* > 0, 0 < y(t) < min (3.24)

Proof. Let us integrate (3.9) from 0 to t. Applying the following resuit due to Fubini:

W>0, V/iGL1(R+), VA>0, f ( f* e~A{s~r)h(T)dA ds = ~ f h{s)(l - e~A{t-s))ds
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and substituting the inequality (3.2), we dérive

f

We set M = min

, , , , 8z/ + C(ai)i;s:i/ll ll2 V2 f
y{t) <y{0) H 2K~c?—^lu°llv + ~ J

2 rt ft /

v Jo Jo v

f — — —, —\ \ and

y(s)
2o;1C;(ai,a2,/3)

iX 1 - e-Kl(4~s))] ds.

Hence, using (3.23), we obtain

y(t)<M- / (M -y(s))a(s,t)ds. (3.25)
- ' O

As y is a continuous solution of (3.9) and as 0 < y(0) — ||uo||y2 < M owing to (3.23), there is an interval of
time on which y(t) < M. Let us prove, by contradiction, that this interval is M+. Indeed, if this were not true,
there would exist t* > 0 such that:

Vt < t*, 0 < y(t) < M and y(t*) = M; (3.26)

therefore y < M on [0, t*] whereas the relation (3.25) gives: y(t*) < M, thus contradicting the equality in (3.26).

•
We conclude this section in proving uniqueness of a global solution of problem (2.20, 2.4), if it exists. Let us

set

K(v) = -div(|A(v)|2A(v)) (3.27)

and let us show that the operator K is monotonous.

Lemma 3.5. Let K be defined by (3.27). For any vi and any V2 in V2,

r\ - v2) > 0 . (3.28)

Proof. Let us recall that, owing to Lemma 2.4,

Hence

2(K(Vl) - K(v2), V! - v2) > || |A(Vl)| | |*4(n + || |A(v2)|
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If we set

the previous inequality can be written

2(K(vi) - K(v2)>Vl - v2) > |K | | £ a ( n ) + ||tü2|||3(n) - \\\™i

which implies (3.28). G

The following lemma refers to any pair of solutions of (2.20).

Lemma 3.6. Let Ui and 112 be two solutions o f (2.20). Their différence u = Ui — U2 satisfies the equality:

6(u(t); Au(t), (2ai + a2)u2(t) + («i + aa)ui(t))

- Qiu2(t); Au(t), u(t)) + /3(K(ui(t)) - k(u2(t)), u(t)) = 0. (3.29)

Proof. The proof dérives from (2.20) and the following relation:

((curlu) x v,w) =6(v;u;w) -b(w;u,v). (3.30)

D

Theorem 3.7. Problem (2.20, 24) has at most one solution in L°°(0,T; V2) for any T > 0.

Proof. Suppose that problem (2.20, 2.4) has two solutions Ui and U2 in L°°(0,T]V2) for any T > 0 and set
u — ui — U-2 Considering that. u2 belongs to L°°(0.T; Vo), the estimâtes derived in the proof of Theorem 3.3
yield

\b(u(t);u2(t)-2(ai + a2)Avi2(t)Mt))\<ci(T)\xi(t)\2
mm, (3.31)

where ci(T) and the subséquent constants C2(T) and cs(T) depend on ai , 012, V, Ci, C2, C(ai), ||ui||x,00(0^^2)'
and ||u2||Loo(o,T;y2)

 an<^ a r e bounded since all these quantities are bounded. Next, as in the proof of Lemma 3.1,
Green's formula gives

| : ( j g 6 ( u ; - J - ) . (3.32)

Hence

|6(u(t); Au(t),(2ai +a2)u2(«) + (ai + a2)ui(*))| < c2(T)|u(t)|^1(fi). (3.33)

Similarly, we have

|&(aiu2(t) - 2(ax + a2)ui(t); Au(t), u(t))| < C3(T)|u(t)|^1(n). (3.34)

Substituting these inequalities into (3.29) and using (3.4, 3.28), we obtain

Then GronwalPs inequality and the fact that u(0) = 0 imply that u(i) = 0 for ail t m [0,T]. D
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4. EXISTENCE OF SOLUTION

In this section, we assume that the boundary F of £7 is of class C2'1 and f belongs to L2(M+; £f(curl; O)) p|

The solution of problem (2.20, 2.4) is constructed by means of Galerkin's discretization. As the imbedding
V2 C V is compact, there exists a séquence of eigenfunctions {WJ} in V2 corresponding to a séquence of
eigenvalues {Xj} such that:

(wj,v)y2 = Aj(wj,v)y, Vv G V2 (4.1)

with

0 < Ai < . . . < Xk < . . . —• + 0 0 .

The functions Wj form an orthonormal basis in y and an orthogonal basis in V2- Following the approach of
Cioranescu and Ouazar in [7], this set of functions will be used as a special basis for the Galerkin-Faedo method.
The two following lemmas establish properties of the eigenfunctions Wj.

Lemma 4.1. Under the assumptions of Lemma 2.1, the eigenfunctions Wj of (4-1) are such that curl(Awj)
belongs to 1 3

Proof. This result is established in the proof of a lemma of [5]. •

Lemma 4.2. The eigenfunctions Wj of (4-1) satisfy, for j > 1,

Vg e iT(curl;fi), ( cu r lg jCur l^ - aiAwj)) = Aj(g, Wj).

Proof Let g belong to H(curl; ft) and v be the solution in V of the Stokes problem:

v - aiAv + Vp = g. (4.2)

On the one hand, Lemma 2.1 implies that v belongs to V2. On the other hand, the equality (4.1) yields

Vv e V2, (curl(v - aiAv),curl(w i - aiAwj)) = Aj(v - aiAv, Wj). (4.3)

Then the result dérives from (4.2, 4.3). •

For any positive integer m, we dénote by Vm the vector space spanned by the first m eigenfunctions {y/j}Jt=l

and by Pm the orthogonal projection operator on Vm for the scalar product in V2. We define an approximate
solution of problem (2.20, 2.4) by: Find
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solution for 1 < j < m, of

- (2a! + a2)Aum(t)) x um(t),

(4.4)

um (O)=Pm (u o ) . (4.5)

Classical results on ODE (cf. [8]) insure that such a System has a solution um , unique and continuous on [0, T^\
with u ^ in L°°(0, T^), for some number T^ > 0. We propose to prove that um(£) satisfies the a priori estimâtes
of Section 3.

On multiplying both sides of (4.4) by Cj,m(£) and summing with respect to j , we obtain on [0, T^] the equality
(compare with (3.3)):

1 d 2 2 0 4

(4.6)

Then, the proof of Lemma 3.1 carries over to um without modification and yields the following result.

Lemma 4.3. The solution um of problem (4-4? 4-5) satisfies the inequalities for all t in [O,Z^J;

< e-^*||uTO(0)||2v + Ç f e-K

- K2 j\-K«->) (^ - ||um(5)||v2) Hi^^ll^da, (4.7)

J* || \A(um(s))\ ||l4(n) ds < i (\\um(0)fv + 'Ç J* ||f (S)|||a

where K\ and K2 are defined as in Lemma 3.1.

Owing to the special basis, we can also dérive from équation (4.4) an estimate for curl(um(£) — cuiAum(t)).
We define, first, the vector valued function F(v) for all v in F2:

F(v) = - vAv + curl(v - (2ai + a2)Av) x v

+ (ai +a 2 ) ( -A(v.Vv) + 2v.V(Av)) -/?div(|^(v)|2A(v)). (4.9)

Using the définition of F, we obtain

^)v + (F(um(t)) -fW,w,) = 0.

Owing to Lemma 4.1, F(um(£)) belongs to if(curl;f2). Then, multiplying the previous equality by Cj,
and setting zm = curl(um — ai Aum) , Lemma 4.2 yields

^ + (curlF(um(t)),zm(i)) = (curlf(t),zm(t)). (4.10)

The next theorem establishes the analogue of Theorem 3.3.
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Theorem 4.4. Suppose that f belongs to L2(M+; il(curl; fi)) f| L°°(IR+; L2(fi)3) and T zs o/ class C2'1. Tften
= ||um(t)||y2 satisfies the differential inequality in [0,T^];

+ Ç jT e-^^)||f(S)||2L2(n) ds)

/3) - Vit)

î - ^tfa jfe-*i<*-> ( ^ V ^ ) ) | |u(S ) | | 2dS (4.11)|î4(n) - ^ t f

where C(aiJa2J(3) is defined by (3.10) and K\ and Ki are defined as in Lemma 3.1.

Proof. Thanks to (2.27-2.29, 2.22), from (4.10) we dérive after suppressing the variable t, in order to simplify
the notation, and after setting u>m = curlum,

L / 9u m duim
, zm) - b(-—;——,zm)

dxk dxk

; , zm) b ( ;
j ^ dxk dxk dxk dxk

, zm)]} - /3{2(V(|A(um)|2).Vu;m, zm) + (B(um), zm)}

+ —II ^ ( u ^ l z J I 2 ^ ™ = (curl(f + — um) ,zm) + —(|A(um) |2curlum ,zm) . (4.12)

This is exactly the same situation as in Theorem 3.3 and the same proof gives (4.11). •

Consider a solution of (4.11) with initial value

The convergence properties of Pm imply that, if u0 and f satisfy (3.23), then for ail sufïiciently large m, um(0)
and f will satisfy the analogue of (3.23):

'Ç f™ ^ 1 ° ° Ilcurlf (t)||£a(n) dt

Hence the conclusion of Lemma 3.4 implies that T^ = OG and that nm(t) is uniformly bounded in V2 with
respect to time:

V* > 0, \\um{t)\\v, < min (J V ^ , ^ ) . (4.14)

Thus, the équivalence of norms of Lemma 2.1, (4.7, 4.14) imply that the séquence {um}m>i is bounded with
respect to m in £°°(IR+; F3(fi)3) f)L2{R+; 1 3

The next lemma gives a bound for u'm(t).
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Lemma 4.5. Let f belong to L2(M+; L2(Q)3) and Uo belong to V2. Suppose that the séquence {um}m>i is
bounded with respect to m in L°° {R+\ H3 (ü)3) n L2(M+; HH^)3)- Then {u^}m>i is bounded wüh respect to m

Proof. Let us multiply both sides of (4.4) by c^m(£), sum over j and use (3.30), this gives:

\\u'm(t)\\2
v = KAum(*),<(*)) -b(um(t);nm(t),n'm(t)) - a2b(um(t);Aum{t),u'm(t))

- (2ai +a2)b{u'm{t);Aum{t),um{t)) - (a1+a2)Kum(t);Au'm(t),um(t))

- ^(\A(um(t))\2A(um(t)),A(n'm(t))) + (f(t),u'm(t)). (4.15)

The arguments of Section 3 show that: b(um{t); Au'm{t), um{t)), 6(um(t); um(t), u'm{t)), b(u'm(t); Aum(t), um(t))
and 6(um(i); AuTO(i), u'm(i)) are all bounded by an expression of the form

where the constant C is independent of m and t. Moreover,

{\A{um{t))?A{nm{t)),A{u'm{t))) = ^

Hence, we obtain

+ f ||f (t) ||La(n) ||u^

where the constant k is independent of m and t. Using (3.4) and the identity ab < ar + (l/4)62, integrating
over IR+ yields

Since we have |p(um(0)) | | |£4 ( n ) < lôCj/aiHumH^ , R + _^3 ,^.3 JIUQH2/, the séquence « J m > i is bounded

]/). ' D

The next theorem summarizes the above bounds.

Theorem 4.6. Let ft be a bounded, simply-connected open set ofM3 with a boundary T of class C2>1. Let the
right-hand side f be given in L2(R+; #(curl; £1)) P|L°°(R+; L2(fl)3)) and the initial velocity uo be given in V2,
small enough so that they satisfy

\\M2v2 +
 SVXC£l)Kl(\\»o\\2v + — f0 ||f(t)Hi.(n) dt) + ̂  r l|curlf(t)||i,(n) dt

< min ( ^ - , ^ ) , (4.16)

with C(ai,ot2, (3) defined by (3.10) and K± and K2 defined as in Lemma 3.1. Then for all sufficiently large m,
the unique solution u m of the Galerkin system of équations (4-4> 4-5) exists for all time t>0 and satisfies the
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upper bounds:

H U - I I J L 2 ( M + ; ^ ) <A:2, (4.17)

where k\ and k2 are constants independent of m.

It remains to pass to the limit with respect to m. It follows from (4.17) that there exists a fonction u and a
subsequence of {um} ; still denoted {um}j such that

lim um = u weak* in L°°(]R+; Vb),

lim u^ = u' weak in L2(M+; V).

On one hand, this implies that

- m i n ( A/O m " ö\>JF ) a n d u(°) = uo*

On the other hand, for any T > 0, {um}m>o is bounded in the space

W = {v G L 2 (0 ,T;# 3 (n) 3 )V € L2(0,T; ff^îî)3)} •

According to [11], the imbedding of VF into L2(0,T; H2(Q)3) is compact; thus

lim um = u strongly in L2(0,T; #2(f2)3).
m—>-oo

The only problem is to pass to the limit in the term K(um). We have

lim K(um) - * weak in L2(0,T; L2(ü)3).
m—*-oo

It remains to prove ^ = K(u). First, we have

V(u, w) G (H3(Q)3)2
: Vv G #o(^)3 , lim(K(u-f ew),v) = (K(u),v).

Next, for any w in L°°(0,T; H3(Ü)3 H H^ü)3) and any e > 0, (3.28) implies

[ (K(um(t)) - K(u(t) - ÊW(É)), um(t) - u(t) + ew(t)) d* > 0.
«/o

Passing to the limit, we dérive

and, finally

lim K(um) - K(u) weak in L2(0,T;L2(Cl)3).

From there we readily pass to the limit in (4.4) and dérive that u is the solution of problem (2.20, 2.4). Since
this solution is unique, the whole séquence {um} tends to u. This establishes the main theorem of this section.
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Theorem 4.7. Under the assumptions of Theorem 4-6; the problem (2.20, 2.4) has one and only one solution
u that exists for ail Urne t > 0. Furthermore, u belongs to L°°(M+]V2), u' belongs to L2(R+;V) and u %s
uniformly bounded m V2 with respect to Urne:

where C(ai,a2,/3) w defined by (3.10) and K\ and K2 are defined as m Lemma 3.1.

5. A D D I T I O N A L REGULARITY: THE CLASSICAL SOLUTION

In this section, we assume that problem (2.20, 2.4) has a solution u in L°°(0,T; V2) with u' in L2(0,T]V),
which is not necessarily global. Let us take both f and curl f in ̂ ( 0 ,7 ; J î 1 ^ ) 3 ) . u0 in HA(Q)3 n V and F of
class C3'1. We propose to show that curl(u — ai Au) belongs to L°°(0, T; H1^)3). In view of Remark 2.3, this
implies that u is in L°°(0,T; #4(£T)3).

First, we are going to define two linear mappings 1 and g defined in L2(Q)3 such that l(curl(u — ai Au)) = u
and g(curl(u — ai Au)) = curlu. Afterwards, from équation (2.30) and using 1 and g, we shall dérive a
transport équation with particular solution z = curl(u — ai Au) m L2(0, T\L2{Q)Z). Then we shall show
that this équation has a solution in L°°(0,T; Hl(Q)3) and finally that it has no more than one solution in
L2(0,T;L2(Q)3). Therefore the unique solution z in L°°(0, T; if^fî)3) is curl(u - ai Au), hence u belongs to
L°°(0,T;tf4(U)3).

5.1. A transport équation

We define

G = {v e L2(^)3; div v = 0, < v.n, 1 >Tt= 0 for 0 < % < p] •

Let PG be the orthogonal projection operator on G for the scalar product in L2(Q)3. Let z belong to £2(fi)3

and set

yz -

As fl is simply-connected, there exists a unique vector-potential <ftz such that

yz = curl <f>z and div <pz = 0 in Q , 0Z n = 0 on F.

Furthermore, the regularity of F implies that <pz belongs to H1^)3 and there exists a constant C[ such that

Then we define vz in V as the solution of the Stokes problem

vz - ai Avz + V?rz = 4>z

The regularity of F implies that vz e H3(Q)3 and there exists a constant C!
2 such that

We set

l(z) - vz and g(z) = curl vz (5.1)
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Then the above inequalities enable us to obtain

l|l(z)||frs(n) < C'||z||L2(n) and \\g(z)\\H2{Q) < V2C"||z||^(n). (5.2)

Lemma 5.1. Let 1 and g be defined by (5.1). /ƒ u G V2, then

l(curl(u — ai Au)) = u and g(curl(u — ai Au)) = curlu.

Proof. If z = curl(u — ai Au), then curl(u — ai Au) = curl(vz — aiAv z). Hence vz = u. •

Lemma 5.2. In addition to the assumptions of Lemma 2.1, suppose that T is of das s C3>1. Then the mapping 1
is a linear continuons operator from Hl(Q)^ ^n^° # 4 ( ^ ) 3 and the mapping g is a linear continuons operator
from H1^)3 into H3(Q)3 and there exists a constant Cff such that

< C"||z||Hi(n) and H g ^ U ^ ) < V2C"||z||Hi (n). (5,3)

Proof Let z belong to H1^)3

z = yz + w z ,

where yz G G and wz G GL. It can be proved that

p

wz = Vpz + ^2 < (z -
i=i

where pz is the solution of the Dirichlet problem:

Apz = div z with pz e HQ(Q)

and each q^ is the unique solution in H1 (O,) of the problem (cf. [2])

- A ç f = 0 in fi,

q^lro = 0 and q^\vk ~ constant, 1 < k < p,

(Vgf .n, l)r0 = - 1 and (Vgf.n, l)rfc = 6ik , l<k<p.

Owing to the regularity of the Dirichlet problem and the fact that Vqf G iJm(fi)3
; provided F is of class

for an integer m > 1, we obtain that the mapping z 1—>• wz is a linear continuous operator from Jï1(fi)3 into
itself. Hence there exists a constant CQ such that

Vz G tfW, \\yz\\HHn) < C%\\z\\&(ny

Then the regularity of F implies that there exists a constant C" such that

Vz G Fx(fi)3 , ||vz|[

D
To transform équation (2.30) into a more adequate équation, we shall replace u? — ai Au? by z and iv by g(z)
where u) = curl u. But expressing X^=i ^nfc x V A ^ or B(u) as a bilinear function of z and u is not
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straightforward and to this end we need the following results that we can verify on remembering that divu = 0.

3 3 Pi F)
y ^ Vnfc x VAufc = - y ^ —^- x curl(—^-) + Au;.Vu - w.VAu + Au? x w, (5.4)

ti tidXk dxh

Au.Vu; + w.VAu = — Vfcurl cu.curl u) (u — ctiAw) x curl u, (5-5)
ai

Au;.Vu = - — (u? - ai Au;).Vu H curl u.Vu. (5.6)
ai ai

Next, we set

L(U!v,z) = 2 £ [V(4y(u) A ^ j ] ^ ) ) ) ) x A | i ( v ) _ i -^^AjfvjVflgfz)) , ) ] . (5.7)

From Lemma 5.1, we dérive

L(u, u, u - ai Au?)) = B(u). (5.8)

On using (5.4-5.6, 5.8) in the transport équation (2.30), we obtain

— (u; — ai Au;) H (a; — ai Au;) + u.V(u; — ai Au;) (u; — ai Au;).Vu
ot ai ai

+ (ai -f a2)V(curl w.curl u) — -UJJ — ai Au;) x curl u
ai

^ - ^ - V ^ - Wk x cu r l (_ ) )

+ P( — |A(u)|2(u; - ÛIAW) - 2V(|A(u)|2).Vu? - L(u, U,UJ - axAu;))

= curl f + — curlu-2— ^curlu.Vu + — |A(u)|2curlu.
ai ai ai

Since we know that the solution u of problem (2.20, 2.4) exists, the previous équation leads us to solve the
following transport équation, obtained by replacing u) — « IAU; by z and u? by g(z):

For u given in L°°(0; T; V2), u0 given in H4(n)3nV and f given such that curl f belongs to 1^(0, T; Hl(ft)3)}

find z in L ^ O ^ i ï 1 ^ ) 3 ) solution of:

öz v _ 3ai + 2a2 ^ / ,rt-,, , , , . .
— H z + u.Vz z.Vu + (ai + 0L2) Vfcurlgfzj.curluj
ot a i ai

1 , «\-^/ d , . „ 3u ou „ ô . . 9u ô , / VM
z x curlu + 2 } (-—g(z).V- -—.V^—g z) - - — x —-curlg(z))

a ^ °xk dxk dxk dxk dxk dxk

= curl f -f —curl u - 2 Œl + Œ<2 curl u.Vu + — \A(u) |2curl u, (5.9)
ai ai ai
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z(0) = curl(u0 - ai Auo). (5.10)

Let usrecall that, by construction, ifu is a solution of (2.20, 2.4), with u' inL2(0, T; V), then z = curl(u—ai Au)
is a solution in L2(0,T; L2{üf) of (5.9, 5.10).

5.2. Existence of solution in L°°(0, T; iî1(fX)3) for the transport équation

In order to construct a solution of (5.9, 5.10), let us discretize it by Galerkin's method with a basis similar
to the one introduced by Temam in [15]. The spectral problem

Vveiï^fi)3 , (w,v) + (Vw,Vv) = A(w,v) (5.11)

has a countable séquence of distinct positive eigenvalues:

0 < Ai < A2 < . . . < Afc -> oo

and a corresponding set of eigenfunctions {wj}j>i that form an orthonormal basis of L2(Q)3 and an orthogonal
basis of Hl(Q,)s. Moreover Wj e i?2(fi)3, provided F is of class C1 '1 (homogeneous Neumann problem).

For m > 1, we dénote by Xm the space spanned by {^^j}JLi a n d by P m the orthogonal projection operator
on Xm for the scalar product of iï1(f2)3. Then problem (5.9, 5.10) is discretized by: Find

3 = 1

solution, for 1 < j < m, of

(zm(£) x curl

= (curl(f(i) + — u(t)) - 2ai+Q2curlu(t).Vu(f) + —|A(u(i))|2curlu(t),w,), (5.12)
ai a! ai

zm(0) = Pm(z(0)). (5.13)

This system (c/. [8]) has a solution zm(t), unique and continuous on the whole interval [0,T].
The following lemma gives bounds that we shall use frequently.

Lemma 5.3. Let the matrix A(v) be defined by (2.18). For any v in H3(ü)3,

< 2C1||v||if3(n))

<2||v| | i f3 (n ) ,

||VA(v)||L4(f l )<2C2
3/4||v|| i ï3(o).
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Froof. These bounds dérive mainly from (a + b)2 < 2(a2 + b2) and from the symmetry of the matrix A(v). D

Lemma 5.4. Let u belong to L°°(0, T; V2) and let f be such that curl f belongs to
. Then the solution zm(t) of (5.12, 5.13) is bounded as follows:

\/t G [0,71, \\zm(t)\\HHO) < eK^(\\zm(0)\\Hi(Q) + CT), (5.14)

where KT and CT are two constants that depend on T, but not on m.

Proof. Multiplying both sides of (5.12) by \3ch77l(t), applying (5.11) and summing over j yields, after suppressing
the variable t in order to simplify the notation:

•i(n) + —bmll^fn) + (V(u.Vzm), Vzm) - *** f ZC*2 [(V(zm.Vu); Vzm)1 ; ai v } ai

(zm.Vu,zm)] + (ai + a2)< (V(V(curlg(zm).curlu)), Vzm) + (V(curlg(zm).curlu),zm)

3

(V(zm xcur lu ) ,Vz m )+2V (V ( ^— g(zm).V—^ ) ,Vzm)
1 fc=l L

/ „ / O U a . f A ^ \ /OU 0 , , x
- I V I ^— x -—curlg(zm) , Vzm - -— x -—curlg(zm),z

V \dxk dxk 7 J \dxk dxk

+ 0 4- — (|A(u)|2zm,zm) -2(V(V(|A(u)|2).Vg(zm)),VzfH)
ai

- 2(V(|A(u)|2).Vg(zm),zm) - (V(L(u,u,zm)), Vzm) - (L(u,u,zm),zm)

= (curlf + —cur lu — 2—^ ^curlu.VuH |^4(u)|2curlu, z m ) f f i p . (5.15)

The only troublesome term in (5.15) is (V(u(t).Vzm(t)), zm(i)) because it involves the second dérivation of zm.
On expanding this term, owing to Green's formula, we obtain

(;

Let us examine the other terms of grade 2 (terms not derived from /3div(|Ai|2/li)) of the left-hand side. On
the one hand, we have the terms

3

|(zm.Vu,zm)|, |(V(curlg(zm).curlu),zm)|, | X^(^Tg(z^)-V^T"' :

3 O rs 3 r,
^ - ^ OM O ^—s ^ Ï

1 1

I / ( *V g(zm),zm) | and | ƒ (
fe=i Xk Xk fe=i
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which are bounded by terms of the form: C\\u(t)\\H3^\\zm(t)\\2
L2^ where C dépends on CUC2 and C".

On the other hand, we have the remaining terms of grade 2 which are bounded by terms of the form:
C||u(t)||iï3(Q)|zm(t)|wi(Q)||zm(i)||Hi(Q) where C dépends on CUC2 and C".

Next, there remain the spécifie terms of grade 3. Let us note that

(|A(u)|2zm,zm) = |||A(u)|zm||22(n) > 0,

Since |||j4(u)|Vzm|||2/m > 0, we have only to bound

o

Let us consider the other terms of grade 3 of the left-hand side of (5.15). First, we have the terms

|(V(|A(u)|2).Vg(zm), zm)|, |(L(u, u,zm) , zm)|.

They are bounded by terms of the form: C ||u||^-3/Qj|zm|||/2(Q)) where C dépends on Ci, C2 and C1. There
remain the terms

o

2 J2 ( ^ f c ( u ) ^ ^ z ™ ^ ) ' l(V(L(u,u,zm)),Vzm)|,|(V(V(|A(u)|2).Vg(zm)),Vzm)|.

They are bounded by terms of the form: C Hull^-a/^UzmlI^i^jlzmlH1^)» w n e r e C dépends on Cx, C2 and C/;.
We obtain these results by expanding the terms and by using HÖlder's inequalities, Cauchy-Schwarz and the
same types of arguments as in the proof of Theorem 3.3. Let us show, wit h an example, the arguments used on
proving these types of bounds. Let us expand |(V(V(|^4(u)|2).Vg(zm)), Vzm) | .

(V(V(|J4(u)|2).Vg(zm)),Vzrn)=2

Owing to estimâtes with b (cf. the proof of Th. 3.3), Cauchy-Schwarz and (2.17), we dérive

|(V(V(|A(u)|2).Vg(zm)),VZm)|<2|zm | i ï l (Q)[c2
3/2 | |VA(u)||2

ï l (n) | |Vg(zm)| |LOc (n)

Then Lemma 5.3 and (5.3) give

),Vzm(t))<8v^C1C'X2C| /Vc1) | |u(t) | |2
H 3 ( n ) | |zm(i) | |H1 ( n ) |zm(i) | J ï l(n).

(5.17)
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Finally, simplifying by ||zm(£)||/fi(Q) and using these bounds yields

+ Ks\\u(t)\\Hsia) + K4

Hence, (5.14) follows. D

It sterns from (5.14) that the séquence {zm} is uniformly bounded with respect to m in LOO(Q1T;H1(QI)
3).

Hence, there exists a function z in L°°(0, T;ff1(O)3) and a subsequence of {zm}, still denoted by {zm}, such
that

lim zm = z weakly* in L°°(0,T; Jï^îî)3).
m—»QG

Because the problem is linear, we can pass easily to the limit in (5.12, 5.13) and show that z satisfies (5.9, 5.10).
Hence, we have proved the following theorem.

Theorem 5.5. Assume that Q is a bounded, simply-connected open set ofM3 with a boundary T of class C3 '1 .
/ƒ u is given in L°°(0,T;V2), u 0 in H4(ft)3 f)V and f is such that curlf belongs to L ^ O ^ H ^ Û ) 3 ) , then
problem (5.9, 5.10) has at least one solution z in Loo(0}T;H1(ü)3).

Remark 5.6. The argument used in proving Theorem 5.5 can readily be generalized to dérive a solution z in
L°°(0,T;Fm(O)3) for any m > 1.

5.3. Uniqueness of the solution in £2(0, T; £2(Q)3) for the transport équation

Let zi and Z2 be two solutions of (5.9, 5.10) and set £ = zi — %2> Then £ satisfies

C C ^ C (a: + a2){V(curlg(C).curlu)

+ /?(i-|A(u)|2C - 2V(|A(u)|2).Vg(C) - L(u,u,<)) = 0, (5.18)

C(0) = 0. (5.19)

Because the scalar product of (5.18) with C is n°t defined, let us proceed by transposition (cf. [5]), Recall that
if £ belongs to if1(O)3, owing that u belongs to V, we have

Vv G ifx(O)3 , / (u.VC)-vdx = - ƒ (u.Vv).Cdx.
Jn Jn

Hence problem (5.18, 5.19) has the equivalent variational formulation: Find C m £2(0,T; L2(O)3) solution of

V4>eL2(0,T]Hl(Q)3) with $' e L2(05T;L2(O)3) and <p(T) = 0

(h(u, C)(t), <t>(t))} àt = 0, (5.20)
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where

h(u,C) = 3 a i + 2Q!2C-Vu - (ai + a2){V(curlg(C).curlu) - — (C x curlu)
ax ai

3 * / > x ou du „Ô«(O du

è ï dxk dxk dxk dxk
 i}

- /J(^-|A(u)|2C - 2V(|A(u)|2).Vg(C) - L(u,u, 0 ) , (5.21)

with no term at t — 0 and t — T because £(0) = 0 and <f>(T) = 0. An easy variant of Theorem 5.5 can be
applied to prove that for any \x in L2(0,T; F 1 ^ ) 3 ) , there exists a unique 0 in Z,2(0,T; i ? 1 ^ ) 3 ) with 0 ' in
L2(0,T;L2(Q)3) and 0(T) = 0 such that

(5.22)
ai

We set

0 - F ( / x ) . (5.23)

Taking the scalar product of (5.22) by 0(t) gives

VM G L2(Q,T;Hl(n)3), | |F( M ) | | L 2 ( 0 , T ; L W ) < 2T||M||I/a(o1rïL»(n)3). (5.24)

Lemma 5.7. Let C &e/on̂  io L2(0,T;L2(tt)3) ; u &e ̂ uen in i°°(0,T; V2) and h &e de/ined by (5.21). Then
h(u,C) 6e^n^5^L2(0,T;i:2(^)3) and

||Loo(oiTfv2))K (5-25)

the constants D' and D" depend on a i , a2, Ci, C2 and C" & î noi on T.

Proof. We use the same argument as in the preceding subsection. D
The next lemma proves uniqueness in £2(0, T; L2(Q)3) of the solution of problem (5.9, 5.10).

Lemma 5.8. Let T be of class C2)1 and let u be given zn L°°(0, T; V2). T/ien ifte onZj/ solution C of (5.18, 5.19)
2 2 is C = 0.

/ By density, there exists a séquence {fJ<n} with /xn G I^(]0,T[xü)3 such that

lun^ II/in - C||L2(0)T;L2(n)3) = 0. (5.26)

We set

0n = FGun), (5-27)

where F is defined by (5.23). On taking 0 = (f>n in (5.20), we obtain

* = 0.
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With (5.22, 5.27), this becomes

A(CW,Mn(*)) + (h(u,C)(t),P(Mn)(*))]dt = 0. (5.28)
«/o

In view of (5.26, 5.24), there exists a function V G L2(0,T;L2(Q)3) such that

lim FQuJ = %l> weakly in L2(0,T; L2(O)3).
n—»oo

Moreover

||^IU2(0)r;L2(n)3) < Hm inf ||F(/2n)IU2(o,:r;L2(n)3)-

Hence

IIV>IU2(o,T;i,2(n)3) < ^ I I C I I L ^ O ^ L 2 ^ ) - (5.29)

Passing to the limit in (5.28) gives

T i 0.
/O

Then from (5.29) and Lemma 5.7, we dérive that

ilCil!2(o,T;^(Q)3)(l - 2TC(a1)\\u\\Loo{0^V2))(D
f + D^C^OIIulUoo^.^))) < 0. (5.30)

We set

If T* > T, (5.30) gives

C(t) = 0 for alHin [0,T]-

If T* < T, there exists p € N* such that (p - 1)T* <T<pT*. Replacing successively [0,T] by [(fc - 1)T*, fcT*]
for k = 1,. . . , p — 1 in (5.20, 5.22, 5.24) and Lemma 5.7 yields successively for k = 1,... , p — 1 analogous
relations to (5.30). As ||u||Loc((/c„1)T*)A;T*;y2) < \\u\\LOo(0rT.y2^ we have

{l-2T"C(a1)\\u\\L^(ik_1)T,ikT,.y2)(D
f^DffC(a1)M > % '

Hence C(*) = 0 for all t in [(fc - l)T*,kT*] for k = 1,... , p - 1, that is

COO = 0 for all t in [0, (p - 1)T*].

Finally, the same argument on the remaining interval [(p — 1)T*,T] gives

= ° for all* in [0,T].

D
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5.4. Conclusion

Problem (5.9, 5.10) has a solution z in Loo(0îT;iî1(J1î)3) (see Sect. 5.2) and a solution curl(u - ai Au) in
L2(0:T;L2(Q)3) (see Sect. 5.1). In Section 5.3, we prove that this problem has no more than one solution in
L2(0,T;L2(£})3). Therefore, z = curl(u-aiAu) belongs to L°°(0,T;Hl(n)3) and, in view of Remark 2.3, this
implies that u is in Loo(0,T;iï4(Q)3). We have proved the following theorem.

Theorem 5.9. Assume that Q is a bounded, simply-connected open set of M3 with a boundary T. Suppose
that the solution u of problem (2.1-2.5) belongs to L°°(0, T; V2). IfT is of class C3>1 and if the data have the
regularity:

uQeH4(nfnv , f e L^O.T-H1^)3) , curi f EL^O.T^H1^)3) , (5.31)

then u belongs to L°°(0,T;H4(Q)3).

According to Remark 5.6, the statement of Theorem 5.9 can be generalized by induction to any m > 1
so that it gives the following result. Let Y be of class (7m+2)1 and suppose that the solution u of problem
(2.1-2.5) belongs to L°°(0,T; V2). If u0 is given in Hm+3(tt)3 f) V and f in Ll{0,T; Hm(Ü)3) with curl f in
i^O,!1; jffm(fi)3), then u belongs to L°°(0,Tiiïm+3(n)3). The proof is exactly the same provided we take for
basis the eigenfunctions of the problem

Vv e #m(O)3 , ((w„v))m = X3(w3,v),

where ((., .))m dénotes the scalar product of ifm(il)3.

If we apply this result for m = 4, with f and curl f in L°°(0,T; H4(Ü)3) and — in L°°(0,T; H3(Q,)3), we
C/Ti

can obtain a classical solution for problem (1.5):

ueC1([0,T];C3(n)3).PeC([0,T];C2(fl)).

6. CASE WHERE ft is NON-SIMPLY-CONNECTED
We shall only sketch the method very briefly. Let Übea bounded domain of M3 with F at least of class C1'1.

Let P be the Helmholtz's projection operator of L2(Q)3. Then there exist a constant Ci(ai) such that

Vv G V n # W , ||v||H2(n) < Ci(ai)||P(v -

We introducé the space

V2 - {v e V n H2(Q)3; curl(v - ai Av) G L2(ü)3},

equipped with the scalar product

(u,v)y2 = (P(u — aiAu),P(v - aiAv)) + (curl(u — aiAu),curl(v —

and associated norm ||v||y2 = (VÏV)V^ • Using the fact that the space Xj-(fl) is continuously imbedded in
H1^)3 (cf. [2]), we can prove the following result, that is the analogue of Lemma 2.1: V2 C H3(Ct)3 and there
exist a constant C2(ai) such that

Vv€y 2 ï llvll^^) <C2(ai)||v||va.

Then, by a method analogous to that of the simply-connected case, using, in addition, some results of [2], we
prove the the same types of results as in the simply-connected case about existence and uniqueness.
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Finally if we assume that the bounded domain Q} as in the geometrical examples we have in mind. satisfies
the hypothesis: there exists an "admissible set of cuts" that reduces it to a simply-connected domain (see [2]),
we can extend the preceding results of regularity to non-simply-connected domains.
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