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SOME SPECIAL SOLUTIONS OF SELF SIMILAR TYPE IN MHD,
OBTAINED BY A SEPARATION METHOD OF VARIABLES

MICHEL CESSENAT! AND PHILIPPE GENTA!

Abstract. We use a method based on a separation of variables for solving a first order partial differ-
ential equations system, using a very simple modelling of MHD. The method consists in introducing
three unknown variables ¢1, ¢2, ¢3 in addition to the time variable ¢ and then in searching a solution
which is separated with respect to ¢1 and ¢ only. This is allowed by a very simple relation, called a
“metric separation equation”, which governs the type of solutions with respect to time. The families
of solutions for the system of equations thus obtained, correspond to a radial evolution of the fluid.
Solving the MHD equations is then reduced to find the transverse component Hys of the magnetic
field on the unit sphere ¥ by solving a non linear partial equation on . Thus, we generalize ideas of
Courant-Friedrichs [7] and of Sedov [11], on dimensional analysis and self-similar solutions.

Résumé. On développe une méthode de séparation de variables pour un systéme d’équations aux
dérivées partielles du premier ordre qui intervient en magnétohydrodynamique dans une modélisation
simplifiée. Cette méthode consiste a faire intervenir en plus du temps, de nouvelles variables a priori
inconnues ¢1, ¢2, @3, et a chercher & imposer & la solution du systéme une séparation des variables
vis-a-vis du temps et de ¢1 seulement. Ceci est rendu possible & ’aide d’une équation trés simple, dite
équation de séparation métrique, qui gouverne le type des solutions. On dégage alors des familles de
solutions asymptotiques admissibles pour le systéme d’équations, et qui correspondent & une évolution
radiale du fluide. La résolution du systéme d’équations de la MHD est alors ramenée & déterminer la
composante transverse Hx du champ magnétique sur la sphére unité 3, par la résolution d’une équation
aux dérivées partielles non linéaire sur . On généralise ainsi des idées de Courant et Friedrichs [7], et
de Sedov [11], reliées aux questions d’analyse dimensionnelle et d’autosimilitude.
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1. MODELLING IN MAGNETOHYDRODYNAMICS

We study the coupled evolution of a compressible fluid and electromagnetic field using a macroscopic mod-
elling and the following assumptions: ‘

(a) The fluid is a perfect gas, homogeneous and not viscous. The fluid is described by its specific mass p,
its velocity v and its pressure p. The fluid equations are obtained by the conservative laws of density,
momentum and energy. The fluid is also a perfect medium with respect to electromagnetic properties,
isotropic and homogeneous.

Keywords and phrases. Magnetohydrodynamic (MHD), separation of variables, selfsimilar solutions, dimensional analysis.
1 CEA/DAM, Centre d’Etudes de Bruyeres-le-Chétel, B.P. 12, 91680 Bruyeéres-le-Chatel, France. .
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(b) The equations of evolution of the electromagnetic field are the Maxwell equations with constitutive
equations.

1.1. Electromagnetic modelling

1.1.1. Electromagnetic modelling for a medium at rest

The electromagnetic field is described by the magnetic field H, the electric field E, the magnetic and electric
inductions B and D, which satisfy the Maxwell equations (in the International System 1.S. of units)®:

0B oD
) L irtE=0, &2 _rotH =—j
(1) 5r T 0, 5 ot J (1)
(i) divB =0, div D = p,,

where j is the current density and p. the electric charge density.

In a perfect, isotropic, homogeneous steady medium without time-memory, the following constitutive laws
are used:

D=¢E, B=uH, j=o0E, (2)
€, 4, o being the permittivity, the permeability and the conductivity of the medium.

1.1.2. FElectromagnetic modelling for a moving medium

If the evolution of the medium is given by a transformation u in R* xR, u : (z,t) € R3xR — u(z,t) € R® xR,
we have to transform the electromagnetic field, Maxwell equations and constitutive relations by u. We denote
by a prime the transforms of E, H, B, D, j, p.. When u is a Lorentz transformation, it is well known (see [5,9])
that Maxwell equations are invariant, and constitutive relations are changed into (for a Lorentz transformation
with a constant velocity v of the S’ frame with respect to the reference frame .S)

) D'+cl2va'=g(E'+va') (i) B'—Clzvfo:u(H'—vxD')
o - (3)
(iii) j’—p’cv:a,ﬁ(E'+va'—E2UU>, with 8= (1— (v2/c?) ™2,

In the case of Galilean transformation (z,t) — (x + vt,t), the constitutive relations are:

B' = u(H' —v x D'},
D' =¢e(E' +v x B), (4)
j —plv=0c(FE +vx B).

Finally, the simplified constitutive relations are:
D=¢E, B=uH, j=o0(E+vxB)+pmu, (5)

with € = €9, 1 = po, (€0, po the permittivity and the permeability of the free space).
Then p.v and j are neglected and these formulas are assumed to be still locally true when v is not a constant.

1In the whole paper, we use the French notation rot for curl.
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1.1.3. Lorentz force density and energy balance law

941

(a) The action of the electromagnetic field on the fluid is assumed to be given by the Lorentz force density:

Fr = p.E+j x B,

(6)

thus, if the time derivative of the electric induction (or “displacement current”) D is neglected in the Maxwell

equations, we have:

Fyr, = eo(div E)E + po(rot H) >< H
eo(div EYE — g grad — + wo(H -V)H,

with (H - V)H; = 3, H; §2=

(b) The usual energy balance law with Joule effect is written in the “conservative form”

. Owm
]E———ét——de

1
with S = E x H and wy, = (soE2+,u0H2):§(D~E+B-H).

N | =

1.1.4. Summary of the electromagnetic equations

Finally, under the previous assumptions, the Maxwell equations with the constitutive laws are:

B
(i) 6—+rotE:0, —rot H = —j,

ot
(ily divB =0, divD = p,
with
(iii) B = poH, D = &yE, j~o(E+vx B).

Thus the electric field F is obtained through H by:
1
E =~ —rot H— ppv X H.
o

The equation for H is:

OH 1
E - EAH—I‘OY,(’U X H) =~ 0.

(7)

(9)

(11)

If we assume, at last, that the fluid conductivity is high so that its corresponding term in the previous equation

may be neglected, we obtain “with infinite conduction”:

aa—il—rot(v x H) =0,

E=—-vXxB=—pyvx H.

(12)
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1.2. “Hydrodynamics” and fluid modelling

The fluid evolution in the space M = R? is given as a function ¢ of a € R® and time ¢, with regularity
properties for every ¢t in the time interval (to,¢;); the map a € R3 — ¢(a,t) € R3 must be invertible, continuous
and differentiable with its inverse, according to a particle interpretation of the fluid evolution: a = (a;),
¢ = 1,2,3, are the Lagrangian coordinates of a fluid particle at time ¢ = 0 and z = (z;) = z,,:(t) = ¢i(a, 1),
i =1,2,3 are the Eulerian coordinates of the fluid particle at time ¢.

The field of velocity is obtained from ¢ by:

v(z(t),t) = %d)(a, t) e v(g(a,t),t) = a(itqb(a, t). (13)

If f is a regular (C*) function on R x Ry, its particle derivative (or material time derivative) df/dt is the time
derivative of F(t) = f(za(t), )

Oz; Of Bf

5 6:01 =v- gradfjta—]c at (z(t),t). (14)

The fluid equations (obtained from conservative laws) are?:

(1) dp—!—pdlvv—O

dt
.. dv
(ii) i = Fr, +divé, (15)
Ly d v? ) . :
(iii) e e+? =j-E+div(é - v) — divg,

where & denote the stress tensor, e the internal energy and ¢ the heat flux.
We assume that:

(i) the stress tensor ¢ is reduced to the pressure term & = —pI (I is the identity matrix),
(ii) the heat flux g is null,
(iii) the internal energy e satisfies the law of perfect gas (with v the adiabatic constant):

L
e= ’ (16)

The equation (15iii) on internal energy is simplified to:

de
P +pdive = 0. (17)
Thus with (15i), then with (16), we have:
de 1 dp dp . ,
@ P =0, and T +ypdivy =0, 7

corresponding to the adiabatic law of evolution pp~™ = constant.

2See for example (8].
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1.3. Global system of equations

We simplify and summarize the coupled system of magnetohydrodynamics, as follows. We search for a vector
function U of z and ¢:

U(z,t) = [p(z,t), v(z,t), H(z,t), p(z,t)] (18)
with 8 components U;,j =1,...,8,
Ur=p, Uirj=v;, 5=1,2,3, Us;=Hj, =123, Us=p, (18)

satisfying the following equations:

5 P4 div(pv) =0,
Ov
P\ 5 +(v-V)v ) +gradp = Fr, = po(rot H) x H,
o (19)
rr —rot(v x H) =0, with divH =0,
2]
5127 + (v-V)p+ypdive = 0,
or
.
i‘: + pdivy =0,
P~ 4 gradp = po(rot H) x H,
dt 19/
dH (19
X + H(divv) — (H - V)v =0, with divH =0,
dp +ypdivy = 0.
VU =
N P
We can write these relations using matrix notations:
ou d
E'FAU 0, or d—[t]-i-AU—O (20)

Then, with ! = 1,...,8 and with components U, (m = 1,...,8) of U, if A{m and A{m are the components of
A and A, we have:

0 d
Ul + Z Z Alm a = 7 or Ul + Z Z Alm 6.’L‘ (21)
7j=1,2,3m=1 7=1,2,3m=1

where

0 pdiv 0 0

p
1 1
AU _ 0 0 ;)',LL()O/ -V v (22)
b 0 0 H
b

(=}

2

3
&
<
o
o
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and where

pdiv = (pg‘z—l,pa%z, ps%) , V ="'div=grad, and a,b the 3 x 3 matrix operators (23)
aij = H;0; — (H -V)bi;, by = Hid; — (H - V)dy;.

Using block matrix notations, the matrix operator A is A =Y A*8;,k = 1,2,3, with

0 pI* 0 0
1 k 1 k
ak= |00 Gpeat I (24)
0 bF 0 0
0 ~pI* 0 0

where I* is an 1 x 3 matrix, J* is a 3 x 1 matrix, and a¥, b* are 3 x 3 matrices given by:

(I%) | = Okas  (J¥),, =0kay a=1,2,3, thus J*= ¥,
and (ak)ij = (H;0ix — Hydi), (bk)ij = (Hidjx — Hydij), 1,5 =1,2,3, thus b* ="‘a*. (25)

The system of equations (19) is commonly used in MHD, see for example [1-4,10].

2. DIMENSIONAL ANALYSIS
2.1. Dimensional equations

At first, we note all these statements are usual in fluid mechanics (Vaschy-Buckingham theorem). We refer

alsoc to [11] and to the Russian School (e.g. [3,4], for many studies on Z-pinch).

e 2y 2]y AU RS 2e2

The state of a physical system at a point (z,t) (z € R3) is given by physical quantities, which basically
depend on the chosen units and scale. In the physical systems here considered, relative to mechanics, the basic
units are:

length (L), time (T), mass (M) and electrical charge (Q).
The physical quantities v, H, p are taken in the international system (I.S.)
ol =L3M, [p]=LT7Y [H]=L'T7'Q, [p|=L"'T3M.
Changing the fundamental units modifies the measured quantities:

(lo, to,mo, q0) = (1, t1,m1,q1) = (A7 o, A7 Mo, Az ' o, A ' q0)

LosL =ML T—oT =XT, M-M=>3M Q—Q =\Q,

o =230, v =M e, H = ATIAIH, o =271 .
More generally, a physical quantity A with dimensional equation: [A] = L"*T*> M¥3Q"+, with v; € Z, is changed
into A’ = A" A2 A3\ A. Thus the dimension of A is v = v4 = (v1,v0,v3,v4) € Z%.

The formula of A’ gives a representation A of the ]Ri group, product of homothetic transformations, in the
R, space '

A= (A1, 02,03, M) €ERy =RE — A = W = AP AP, 26
+ by 1 A2 A3 N\
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In a Cartesian frame ((z;) € R?), the unit change of variables is given by the transformation:
o =Nz (ie zi=X\z; j=1,2,3), t'=Xt, v(@’)=v(z)=(1,0,0,0), and v(t)=(0,1,0,0). (27)

The transform of the function (z,t) — A(z,t) € R associated with the physical quantity A is given by A’(z',t') =
A(z,t), with multi-index notations.

For A = (A1, A2), let hy denote the map (z,t) — A(z,t) = (A\1z, A2t) and A’ the map (', t') = A'(z',t') ; we
obtain:
A ohy=A5A, or A'=A{Ach}" (28)
We have a new representation of the group Ri in a functional space, as:
A = T{(4) = A Ao R, | (29)
with
XL%, = LX,, where X-X = (A1A], Aoy, AgAg, Aad)) - (30)
This corresponds to the diagram:

(z,t) eER*xR —= A — Az,t)eR
h,\l Li’\l A;l
(@ ) ERI xR — A — A,f)eR.

2.2. Self similar éolutions

For A, we choose the components (U;), j =1,...,8, of U = (p, v, H, p) solution of the previous equations of
magnetohydrodynamics.

Now we seek solutions of these equations which are invariant under the global change of units. Then we
obtain that the solutions (if they exist) have a special “asymptotic behaviour” (with respect to z and t).
The solution is written as U;(z, t, uo), j = 1,...,8, with uo the single dimensional constant ([uo] = LMQ™2).
Changing all units, the solution becomes: '
Uj(2',t's wo) = AjUj(x,t; o),  with Aj =AY, v =dimUj,
Uf (Az, Aot; MAsA o) = AU5(z, tp0), 5=1,...,8. (31)

(a) At first, we prove that there cannot exist a solution that would be invariant under this group of transfor-
mations.

IfU;=Uj;,j=1,...,8, we write z = ra,7 = |z, = z/r € §? (« is dimensionless), and
U; (}\17‘, a, Aat; Aq )\3)\22/1,0) = A;U;(r, o, t; po). (32)
Then, taking M7 = 1, Aot = 1, M AaA; 2o = 1, and ¢9 = 1 + (u?; /2), we obtain
U;(r, o, t; o) = )\ggj (r"{+"i/2t"guauz/2) U;(1,0,1;1). (33)

Finally, A3 can be arbitrary and U; = 0 for j # 2, 3,4, because there is only one dimensional constant pg in the
equations.
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(b) Now we seek solutions invariant under a subgroup R*j’r, that is freezing a unit, for example the electrical
charge; we have:

Uj ()\17‘, Q, >\2t; }\1)\3#0) = AjUj ('f‘, Q, t; po). (34)

Let A\ir =1, At =1, A1 Azpo = 1. We obtain, with ¢;(a) = U;(1, o, 1;1) a function of a only,

_ i i

Uj(r, e t; o) = () U(1, @, 151) = 7175587 e oy (@), (35)
We have a natural separation of variables: in general, such a separation with respect to the “natural” variables
(z,t) or (1, a, t) is not possible. The idea is now to impose the separation with respect to new unknown variables,

as Courant and Friedrichs [7] do it for two variables with two new parameters.
These ideas are similar to ideas of Sedov [11] on II-theorem and self-similarity.

2.3. Generalized dimensional analysis

Now let ﬁj (B1, B2, Y1, %2) be a solution of the MHD equations, with unknown variables (1, B2, %1, ¥2. The
quantities B; and (3 have dimensions and are positive, ¥; and s are dimensionless, so that:

U'; (MBr, X2, 91,%2) = )\fj A2 U, (B, Ba, 1,%2), VA1, A € RT, (36)

with real constants 6; and x; only depending on the dimensions v ([7]) = 7; of U;. Assuming that (Uj) is
invariant under this change of units, we have:

~ 9. .~ K
T; (B1, Bas w1, w2) = By’ B3 Uy (1,1, %1, 90) = By By x5 (%1, 92) (37)
by taking /\1,81 = 1, /\2,32 =1.
Let us specify the dimensions v (81),v (B2) of B1, 82 with respect to the units L, T, M and with respect to
coefficients 6; and k;. Let v (8;) = v* = (vi,v4,14), i = 1,2. Then we have:

0 =03 =04, 05=06=20;, and Ky = K3z = kg, K5 = Ke = K1. (38)

Notice that H(uo/p)'/? and v(p/p)*/? are dimensionless and [H] = [p]*/2, thus:

. 1 0, 08 _ _ 1 K1 kg
05—508: ?"*‘02_?_0) and [{‘5_5587 ?+K’2_7'—0' (39)
Let
- 1 ~ ~ 1 . ~ = ~
6, = 591, 02 =02, 03=50s with 6 =05 61
: 1 (40)
F.‘/1:§K)1, Ro = Ka, R3:§N8 with Rg = K3 — Ry
and also

{6 =03, 6p=0, thus: 6, =06— 0y, (41)

K = K3, Kozkl thus: F.‘,QZFL—H().
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Then the dimensional equations for p and p are:

v(p) = (=3,0,1) = 201 (v}, v3,v3) + 2R (v1,04,04) , (42)
vip) =(-1,-2,1) = 205 (V}, 1/21,1/%) + 2R3 (Vf, V%,z/;j’) .
It is a system of 6 equations and 6 unknowns V;- (i=1,2;j=1,...,3), with §; and &; as data. This system
has a unique solution if
A = 013 — O3k) = Ook — Orkg # 0, (43)
and this solution is:
1
v (ﬁl) = (Iﬂ:o 3k, 2Kg, kK — Iﬁ:o), v (ﬁz) = ﬂ(—ao + 360, —26y, —0 + 90). (44)

3. DIFFERENTIAL GEOMETRY ANALYSIS

3.1. The method

The basic idea is to seek a solution U,, of the MHD equations, that is invariant with respect to unit changes
of quantities denoted by B;1, 81 and that would be a product of factors with respect to new unknown variables

T, ¢1)¢2)¢3 as:
ﬁm (T7 ¢11¢27¢3) = ﬂlm(T)Blnm (¢1)Wm(¢2’¢3)7 m = 1:" ~58; (45)

Vg, (C’m) = O, V3, (ljfm) = K are the two dimensions of Uy,.

We also have to find the change of variables from the usual coordinates of time and space to (7, ¢).

In Eulerian coordinates,  and t are not independent variables, thus we have to introduce a new time variable,
denoted by t', and to obtain the transformation © : (¢, z) — (7, ¢) through its Jacobian matrix J.

We will choose 7 = t’ (the change of notation is only a question of writing partial derivatives) and then
we choose ¢ and ¢3 independent of ¢'. The main point is that the velocity of the fluid particle is part of the
unknowns (U,,), and thus, must satisfy the separation of variables, as is the formula (45):

Bi(r, ¢) = By ()BT (¢1)Wri(¢2, 63), = 1,2,3. (45")
Now the change of coordinates will be obtained through the differential forms:
do; =vidr+ Y ai;dg;, =1,2,3, dt'=dr, (46)
§=1,2,3

with factors a;; to be defined later. In the whole space R; x R3, we define the operator:

Z aax =, | (47)

also written (zlz) in the basis 0/0z;,0/0t’. We calculate d¢; /dt’ when i = 1,2, 3:

Sd\ 8¢z 3¢z KA o 09 8¢
<d¢“dt’>—< - B + By 9 Z P +5t7>_ oz, t oy =V (48)
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Moreover, we assume that:

Obr _ 063
o~ ot

= 0. (49)

We have the basic formulas of transformation

1(a) = () = (o () st (o () ) 22 - o
1 (Soa) = 1(5) -~ o o

The velocity of the fluid particle must be of the form, with separate variables:

v = gl—Now, ie., v; = g,lNowi, i=1,2,3, with a—,lwi = Wis+1, @1 constant, (51)
K1 K K1
with
No(r,¢1) = B1(1)% Bu(¢1)™, with 9} =8, =0—6p, K =k =k — Ko, (52)
Let
- B r ) - -
r=2 =R =2, win gLALA #0. (53)
1 1
Then
ON ON 1
0 =~g, No, =0 — k= N,. (54)
or ¢ I

Gaij __

or ﬁf;zaj_l72)31

Relations (46) must correspond to closed differential forms, thus the Schwarz conditions
must be satisfied, thus factors a;; in (46) are so that

! I
T
@i = L0v; = "L~y = GNow;, i=1,2,3,
a1 a T
T Ow;
aij = —Nowij, =123, j=2,3, w= ouw | (55)
K1 Bd’j
Then (46) can be written as:
dz; = 2 Nwd'r+GNwd¢+ FN é)“”dqs +8wzd¢ i=1,2,3
= Kq oWy oWy 1 0 a¢ 2 ¢ 3 = L, 4 (56)
dt’ = dr.
Obviously, the differential forms dz; are closed forms if and only if:
or

This is called the Metric Separation Equation (MSE). Thus we have the transformation formulas (7, ¢) = (', z)

Ti = ,%/F(T)No(ﬂ ¢1)wi(¢2,43), 1=1,2,3 and t'=r. (58)
1
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3.2. Path of the fluid particle

Now the path of the fluid particle which is at a point a € R® at initial time ¢ = 0, is given by the function:
teR = X,(t) = (t,2a(t) € Rx R® with z,(0) = a.
Now, at point X,(t), we have t =t' = 7,2, (t) = z:(7, ¢), : = 1,2, 3. Thus
1 .
Tai(t) = E—,I‘(t)No(T, ¢1)wi(¢2,¢3), =1,2,3. (59)
4 i
Therefore

2a4(0) = & = — T(O)No(0, 61 )wi(2, 83) = - CB* ()il 2, 83)
1

1 (60)
with C' = (I‘ﬂfl) o constant.
Let M(¢) = I‘(:‘,),Bf’1 (t) /I‘(O)ﬂfl1 (0). From (60), the evolution is given by
Za,i(t) = M(t)a; ie zo(t) = M(t)a, (61)
and the velocity of the fluid particle is:
d 1 0’ Qg
a,i(t) = =xqi(t) = = (I"No + T2 Np ) w; = — No(t, (P2,
Va,i(t) g% (t) P ( ot IR o) w o o(t, 1)wi(d2, #3) (62)
= vi(¢7 T)'
Note that it is also the partial derivative of the position with respect to 7:
d Ox ,
'Ua(t) - &ma(t) - ’U(QZS, T) - E((ﬁ,'r) (62 )
Then (62) implies
v= —lg, e v(za(t),t) = dza(t) _ 2Ly (t) (63)
V0 N dt N
Thus the flow of the fluid particle is radial. Note that the field of velocity is curl free:
rotv = % rotz = 0. (64)
From these results and the relation
01 o 1 a T .
= —-——G = — —— —
ot K} Ky T’ (65)

we can prove (using the Euler equation of homogeneous functions) that By is

Bl (¢1) = C-"1 (13;0!11,.) 1/"1 ) or B],_cll (¢1) - éﬂl_alra él) é consta,nt, éfl = ér (66)
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and we get that ¢1(z4(t),t) only depends on a = (a1, az, as):

B (91 (2a(0),¢)) = CBT (¢ralt) = OB (€)M (lal = G5 O) 31K a,
Bf,l ((}51 (wa(t'),t')> — éﬁ]“al (O)Ia[, ~fll (¢1 (xa(t), tl)) = ]Zg((:,)) ~f/l (¢1 (wa(t,))tl))‘ (67)

Notice also, [from (59)], that the directions of 2 and w are identical, and more precisely, using (59, 60, 66), that
there exists a constant Cp (independent of (7, ¢))

1 5 0o
Co = —-CB ™™ (0)I(0), (68)
1
such that
z; 1 z - w
T = (2] th = T T3 = ) =171
2] Cow us |w| o and 7] W(p2, ¢3) ol (69)

Therefore (¢2, ¢3) may be chosen as spherical coordinates.
3.3. Some general results

To solve the system of equations given by a particular mddelling of MHD, we need the value of 81, 81 through
the MSE. We need also differential operators such as the partial derivatives 8/8t, 8/8z;, 8?/8%x;, grad, div,
rot, v. grad, A. So we write down here the most useful formulas and we calculate also some interesting matrices

deduced from J.
3.3.1. Solutions of the “metric separation equation” (MSE)
Through the MSE, we will get 8:(7). We recall [see (57)]

YT AT )

dar . b1
ki 1, with an- (70)
We have two cases.
(i) az — 6 # 0: Then we can define A\, = (g — 6;)”" and:
4+ 7\ M
ﬂl('r) = Cl ( 0) with ,B()(O) = Cl > 0. (71)

The evolution operator of the fluid particle is:

M(t) = (%;ﬂ)al/(al_ei) . (72)
(i) oz — 6} = 0:
Bi(r) = Crexp(r/m) with Cy = B;(0) > 0, (73)
and then
M(t) = exp(8}t/m1)- (74)

Now, we have §; from f; [see (65, 66)].
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3.3.2. Formulation of the MHD equations using the variables (¢, T)
Let © be the change of coordinates (z,t') — (¢, 7) = (¢1, ¢2, ¢3, 7). We define:

ﬁ(¢’ T) =U (@—1((;5’ T)) > Xa(t) = @(Xa(t)), (75)

thus U (X,(t)) = (7(6 (Xa,(t))) =U (Xa(t)) Then we can prove that

d d _oU
dt U(Xa(t)) = ( “‘(t)) Xa(t) ar ’ (76)
Xa(t)
The MHD equations of Section 1.3 are transformed into
Ul+2;z Im a¢ jl :E(Xa(t))y (77)
= Xao(t)
with
8@
L (Xa(®) ZA (Xa() 522 (Xa() = (7 (4im) (78)
and thus, using (45, 53) with N,,, = ﬁf"‘ ,Bf"", the MHD equations are
Wp =
-01N,WI+Z =kmNm Bl Wi + Y > Bl N, mgg = Fh 1=1...8 (79)
J

j=2,3 m
3.3.3. Jacobian matriz and scale factors

Transformation in R*

The Jacobian matrix J of the change of variables © : (z,t') — (¢, 7) is given by the dyadic expression, with
¢o =1, 10 =1

8¢ 0
J= z%@d@_za‘f’ 75 ® (80)

19z;

(j(A))i: . -Z%Aj, with J = (J,J) = (gi,) : (81)

The transform of the vector A=3._, 3 4; 2 is J(A) =3, (J (A)) 35, with:

Then the inverse of the Jacobian matrix J is given by:

3
_ ox;
J 1=§:axj®dacJ § a¢z—®d¢, (82)
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Let B denote a tangent vector field in the ¢ variables:

3 3
0 0 0
B = B; = Bg— B,— -
2. %5g = Par T ; o%; (83)
The transform A of B by the change of coordinates © ! is
3
1o} oz; O Oz
A=) Aj—=J"'B= B—J—, thus A, =Y —21B. 84
2 45s; E_o 59: B, Z 50 (54
To change the components (B;) to (A4;), with (4) = J~1(B), use J ! given by:
J
o o o o t o 0 0
Ot 0¢1 O¢2 O¢s N GNews TN Owy 11w Owy
8:61 8.’,171 811 (9131 Kll o o "g{l 06¢2 ’ill 08¢3
-y = =2 =t =1
Jo=|0r 0¢1 0O¢s 93 = ﬁ;l_ Nows GNows _17 0212 ir Ny 222 Ows
K} K1 02 O3
8:[23 a ) 1 8’!1)3 1 a’wg
= — N, GN, —I'N, —I‘N
03 P 35

Transformation in R3

Let B = Zz L Biza a4, and A be given by A = Z?:l Aj%j (thus with By = 0, Ag = 0) with

/G1V0wl FNO g,l;; F Og,;‘;;
A B, by 1 ows | (B
Ay | =J5' [ B2 | = | GNowa — FNoa _,FNOB_‘ By |- (85)
As Bs Kl ¢2 K] b3 Bs
Ows 1 N ows
GN()’LU3 ,{'—,11_‘1\703f¢)2 K_’I 055;

Let B denote the vector with components:

.1 -1
By =GNoBy, By=—TNoBy, Bs=—TNoBs. (86)
1 1

Let J; be this transformation from B to A:

w 8’(1)1 0w1
, — =2
~ O0p2 0¢3 -

Ay 1?1 Owa Ows 51

Ay | =/, Biz = | w2 5@ ‘5(;5—3 BiZ : (87)
A

’ Ba ows  Ows |

w3 & — =

Op2 g3
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Now, if we define the scale factor matrix A by

1
GNo 01 0
A= 0 &} TN, 01 ,
0 0 K1 A
then the matrix J; ' defined by (85) is given by
Jot = JiATh

Let J; ! denote the dimensionless matrix:

m M M3
Jit=16 &2 83

€1 &2 €3

Then the matrix Jo [the inverse of J; * given by (85)] is Jo = AJ;*, and the coefficients of Jy are:

ad)l 1 a¢2 1 1 8¢3 ’ 1 .
— =7, — =K,=——0;, — =K =1,2,3.
8xj GN()T]J, ij K,II‘ 0 7 827j F1 FNOEJ J: T
The first order derivatives of U; are:
9 0 T “o
0z, 0¢1 r ml~
9 _t 0 ot oU l _ K1 ¢ -1 a_U_l
5:5 Ul o JO 3¢2 Ul o J() 6(]52 o FNO Jl 6¢2
o o o0 ou
Oz3 03 8¢5 0¢3

Note that, from the “dimensional” point of view, to derivate is equivalent to multiplying by (I‘No)_1

Remark. Transforms of second order derivatives. Now (92) is also written as

ouL K} . Kl = au, 81)1
=1y h Vi; = —n;0 + +e .
bz; TNy 7 with Vi Pl Ui+ %i5s, 02 | D¢

Then the second order derivatives of U; are:

o AU, K, , (oY Vi
9 oY _ kM | . A 5 ,
Oz azj (I‘NO)2 [ T’knlm,} + "?klﬁlVlJ + K} X 6¢ + £k a¢3

’

Ky ’ ) ’ 3 a‘/l:j .
(FN )2 [(K‘.l 51)7}&%,3 + K3 ((& a(é +6k £ )]

953

(88)

(89)

(90)

(91)

(92)

(93)

(94)

This derivation is equivalent to a multiplication by (I'Ny)~2 (again from the “dimensional” point of view), and
thus the used transformation does not allows us to treat equations with second order terms (with the Laplacian

for example) with constant coefficients.
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Remarks.

We recall that one of the main properties of the change of variables is to change the particle derivative into
the partial derivative.

This method is a general method of variables separation in a system of equations with first order partial
derivatives quasi-linear and non homogeneous.

In some sense the new variables are similar to Lagrangian coordinates, so that the MHD equations transformed
by J may be considered as an other version of the MHD equations in Lagrangian coordinates.

3.4. Solution of the simplified MHD equations
3.4.1. Some remarks about the self similar solutions

The dimensions of (p, v, H, p) with respect to 8y, 8, are, with 01 =0—00, ki =r—Ko

Vg, (P) = 26y, Vg (U) = 20,1) Vg, (H) =0, Vg, (p): 26,
vs,(p) = 2ko, v (v)=2k1, vz (H)=kr, v, ()= 2. (95)

This corresponds to

[poseies, omst vir o
H=p{BtH,  §=00",
with
F=Wi, #;=Wiy, H;=Wuy, §=12,3, p=Ws (96")
Let us calculate 6y,0. First note the very simple value of divv [using (63)]:
dive = %divx:3%u (97)

From the conservative mass (Eq. (15i)), we get: 6 + 2a; = 0. From the adiabatic evolution (Eq. (17°)):
0 — v6p = 0. From the evolution equation of H (if H is not identically 0): 269 + 3a; = 0.
Thus, we obtain v, 8 and 6y as

4 00 = ——3-Oll, 6= —2(11. (98)

’nga 9

The metric separation equation gives the functions 8; and M

Bi(r) =y (”“)Wal), e =’(T+T°)2/3- (%9)

70 70

The solution must sdtisfy the Euler equation and div H = 0. Using (96) in the Euler equation, we verify that
we obtain an equation with the only variables ¢2 and ¢3 (according to the method of separations of variables).
For the equation div H = 0, we obtain:

oH .195) 0, (100)

K I~
E"‘“("a@“ 9%
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3.4.2. Solution of the whole MHD system

We can entirely solve the system using spherical coordinates on the unit sphere X, with the usual notations
¢2 = 07 ¢3 = ¢>

Use of the matrix J; and its inverse J; . Solution of div H = 0

The Jacobian matrix is [see (87)]:

dw Ow da Oa .
Jl = (w, %, a—¢—> = I'LUl (a, %, 8—¢> (101)

with a = e, = (sinf cos @, sin  sin ¢, cos ). Thus the transposed matrix of the inverse of J; is [see (89)]

_ 1 1
tJl t= (771 g, E) = m (67-,69, med)) . (102)

Therefore, with H = H,e, + Hs = Hre, + Hgeg + Hgey we have

1
H-nlw| = H,, H-8lw|=Hy, H-elu|=_—;H, (103)

Then the equation div H = 0, (100), gives with the spherical surface divergence divs

K
= +2. (104)
1

VH, +divs Hy =0, with y =

We obtain (104) also by using the div in spherical coordinates

H, 2
OH, + ZH, +divg Hs, = 0,
or r

and the transformation due to (50)

0 d r 0 I 8¢ O ' oy 1 0 r o
I (’"ar) 7 (Zx’axi) o (Z”’ am,-> ar 0 Opy o1 K, G 041 K, 8¢’ (105)

and with J (1‘2) H=
or

K
—H.
K1

Solution of Euler equation

We take

dv
n +gradp = Fy, = yorot H x H, (106)
and we project on the plane tangent to the unit sphere. The equation

gradsy p = Oy F1, = polls(rot H x H) (107)

gives p through H up to a constant. We get p through H and p by a projection of the Euler equation on the
radial vector.
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Then we take the surface curl, i.e., (rotg) of this equation and we obtain the equation on H only
rotg s (rot H x H) = 0. (108)
We couple this equation with div H = 0 in order to obtain H.

Solution of the system of equations

We can write equation (108) in the form:
roty Hxn(rot H X H) = a - rot(rot H x H), with a=e,. (109)

Using differential geometry (see [5,6]), we obtain:

Hs; - (gradg rots Hy + Afots divy Hy) =0, with A= - :121,1'1 (110)
or also:
(e, x Hy) - (totg rots;, Hy — Agradg divs Hy) = 0. (111)
Instead of the vector unknown Hy, let fi, fo be two scalar unknowns with
divs Hy = f1, rtotg Hy = fa, and fy = — (2 + f,—) H,, (divH =0). (112)
1
Now, we can get Hs through f1, fo. Using the Hodge decomposition (see [5]) of Hs into:
Hs = grads, (1 + Tots; (2, with ¢ € HY(E), i=1,2, (113)
(H(%) is the Sobolev space on the sphere) we obtain: f; = Ag(;, i = 1,2, thus:
Hy, = gradyx Gfy + rots, Gfs, and e, x Hy = rots Gfi — grads, Gfa, (114)

where G is the inverse of the Laplace-Beltrami operator on the sphere in the space LZ(Z) (orthogonal to the
constant functions), given by

Gf() = [ 9@ PF(B)ass with g(a,0) = o= log T (115)
=
Equation (110) is thus reduced to:
(rots Gfy — grady Gfa) - (~Agrady, f1 + 1ot f2) =0, i.e.,
(rots Gf1 — gradg Gf2) - e, x (Atots f1 + gradg f2) = 0. (116)

Then, from the magnetic field H, we get the other unknowns, the pressure p and the density p. We get p
through (107):

1 .
o grads p = Hx(rot H x H) = H, ((1 + 5,—) Hy, — grady, Hr> + (rots; Hs)er X Hx, (117)
0 1
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and then p through the projection of (106) on the unit radial vector:

dv, 0 .
p—;?%-@—f:uoa'F, with a- F =a- (rot H x H). (118)
Using (105), we have
dv, 0} o1 dv, 0] v? o\ . 2k 1.
=1 e =2Lp th =20 J(Z) 5= 25 119
@ TV =TT ths =g and Jig)p=ronp (119)
Therefore (118) gives
2 9! / /
Moplll 4 p = Ara-F = Az F, with o= 25\ —H (120)
2 a1 K 2 K

We also have with (104) and A given by (110):

o-F=—(e, xH) (rot H)y = —(e, Xx H) - ((1+§>6TXH—I—:E)—%2H,~>

1

= — <1 + i,) |H2]2 + Hy - gradz H, =—- <2 + %) Hy - ()\H): + gradz divy H}:) . (121)
Ky 1

We get particular solutions of (116) with a given polarization using (real) spherical harmonics. Let K, be a
real spherical harmonic of order n (n integer, n # 0)

As K, = —n{n+1)K,,
then we have:
TE polarization, thus (f1, f2) = (Kn,0)

1
Hy = ——K,, Hsy=-——gradgK s, 122
T Vo = n(n+1) gracy fn - on (122)

TM polarization, thus (f1, f2) = (0, K,)

Hy = ——_tots K,, H,=0. 123
2= o (123)

(i) In the case of TFE polarization, we get:
A

s (rot H x H) = (v — 1)H,Hy, — H, grads, H, = 7" grady, |Kn|?,

1

Yo

V()(I/o — 1)

nnt1) 1) , Vo given by (104). (124)

Thus from (117)

An
gradgp = Ko grady, (IKn|2) ) (125)
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therefore

. K
Ply= Hoo2 5| Iz—uo—IVo! |H[?, with v =2+ —- (126)
1

We also have

—1
@ F = ~(vo — DIHsl? + Hy - grads H, = o | =1 4 nnt 1)] 1HsP (127)
thus, with (122):
a-F=v |2 f 1) —L K2 (127)
-0 nn+1)" "
Therefore (120) is
’1)2 )\1 1 1 (VO — 1)2 ‘lll() -2
v _ MR L= F 4 2un — 2)p = ) - K,|2. 128
P /\Oa /\P poo - F +2(vo — 2)p Mo[ (1) " v + 72 ]l | (128)

The function p is positive if and only if An > 0,i.e,n(n+1) <vo(rp—1)thatisn—1 < yporalso —n—2 > 1y
[with v given by (104)].

Then from (128), we see that when —n — 2 > vy, p is positive; but p is negative if vy is positive; thus we
obtain that when v is negative, with —n — 2 > 1y, n a (non zero) positive integer, p and p are positive as
wanted for pressure and specific mass. Moreover, with given negative vy, we have an upper bound for n: only
a finite number of spherical Harmonics are acceptable in TE-polarization.

(ii) In the case of TM polarization, we get:

_ 1 |K,?
and
a-F = (- DI =~ it [ = - D (130
In(n+ 1)]2 n(n+1)
Thus
P = o F 2t — Dp = o= (21t — )| K (131)
2 \ S+ 1) o '

We see that p is always positive; p is positive if g > 3/2. Thus when vy > 3/2, we obtain that p and p are
positive as wanted for pressure and specific mass. There is no bound on n in TM-polarization: all spherical
Harmonics with n # 0 are acceptable in TM-polarization.

Regularity of the magnetic field at 0.

Note that the behavior of H in a neighborhood of 0 is of type 7*/*1, thus H is finite at 0 if x/x} > 0, thus if
vy > 2. Using the formula

2/3a1
QK . T+ T nK —a1k/K, K]k,
Hy = BB Wess, with py=Cy (TER) L G = o/, (1)
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we have

T+ 70
T0

2
’ 3 ’
H; = ﬂl—aworn/m Wayj = C7*7° ( ) TK/K1W4+j- (133)

In TM-polarization, the magnetic field is regular at 0 if k/k] > 0, i.e., if vo > 2.
In the case of TE polarization, the magnetic field H is:

1 — 0 Uy 4 1 —on v 4
Hy = “n(n+ 1)51 orvopn/®y grads K, Hy = —1_651 work/m K, (134)
Thus (for example) the radial component is
1 AN
H,(z,t) = ——Cy 1 (ﬂ) K, = |z). (135)
L\ To

We see that when vp is negative the magnetic field in TE-polarization is singular at 0.
3.4.3. Conclusion

We summarize the particular solution obtained with a variable separation method for this simplified MHD
problem. We write the unknowns, the data and the constants.

Let 31 be
Bu(r) = C1i(7), with C; = B1(0), and 3:1(0) = 1. (136)
Then (45) [or (96')] is
Unm(7,¢) = Bi™(1)B5™ (1) Win (b2, 83),  with Win(d2, 63) = CI™ Win(d2, ¢s), (137)
" and f; is such that
B (#1(2a(t),t)) = plal,  with =B (0) = CCT™, (138)

[see (65, 66)]. Thus (66) is: B (¢1(,t')) = uBy ™ (t')r.

If we take |w| =1, then C. I‘(O),Bfi_o‘1 /Ky =1 [see (67)]. If we take w dimensionless, the dimensions of the
constants C, p are

v(C) = (a1 — 0)v(B1) + (0,-1,0), v(u) =Ky (Bl) +(-1,0,0) with (') = (0,1,0).

Then the unknowns are given by:

{p(xau),t) = ColaP /1" (1)5(),  v(a(t),t) = Culal A (1)5(a), (139)
H(za(t),t) = Crlal" 6] ()H(c),  p(za(t),t) = Cpla|>*/*1 52 (t)(c),
with @ = a/|al, and with the constants:
— (200 ,,2K0/K] — 61 — 61— A — ’ill
C,=C"u , C,=Ci'p (thus C,=Cj C F(O)) , (140)

Cyg = Cfun/n'l’ Cp - 01200u2n/n'1.
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Then the unknowns are obtained through initial conditions (¢ = 0) on the unit sphere ¥ (ja] = 1)

po(a) = Cpﬁ(:a) 'UO(a) = Cv'(:i(a) = F—((l)‘)'a, (141)
Ho(a) = CyH(a), pola)=Cpp(a), o€ =582

These quantities must satisfy very simple equations, and we have given explicit formulas in Section 3.4.2.

The method with separate variables applied to the MHD problem allows us to exhibit a family of explicit
self similar solutions.

These solutions are radial with respect to the motion of the fluid particle, but are not invariant with respect
to rotations! We have exhibited completely explicit solutions with spherical harmonics for the magnetic field,
corresponding to particular polarizations (TE or TM) of the field.

The case without magnetic field. Self similar solutions of the compressible fluid equations

Let H = 0. Only the Euler equation remains:

d ,
pSY 4 gradp = 0. (142)
dt
The conservative law of mass gives
260 + 31 =0, (143)

and the relation pp~7 constant (for any given v > 1) leads to
6 — 6y =0. (144)

We project the Euler equation on v and we obtain:

1 5 . K o 2 K
- Ap=20 th A= — = - — 145
PV TP =0 W -0 37D, (145)
(thus A < 0, so that x and k] must have the same sign). From the relation
dv 6] 0o
dv 61 _ . 146
a1 T ° (146)

dv/dt is along the radial vector, and so is gradp. Therefore grady,p = 0 and p is a constant quantity on the
sphere. Consequently, with the notations (139), p(a) is a constant, independent of . By the formula (145), so
is p(a).

Thus, our particular (self similar) solutions of the compressible fluid equations are:

{”(wa(t), £) = polafo/ B2 (1),  v(za(0)t) = volalB (o= woaBli (1) (147)

p(za(t),t) = polal>/* 529 (2), (H =0),

with positive constants (po, vo,po) satisfying

1 .
§p0v§ + Apo = 0. _ (148)
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The exponents of G (t) are such that

200-|—30£1:0, 0—79():0, 9’129—902(’7—1)00, and (1’1—01:—<"/—%>907é0.

To

~ ~ . A1
Now S is given by 1 = (ﬂ) with 7y a positive constant, and

-1
- 1
n= (=) =050 (1-3) ‘ (149)
Therefore, the time evolutions of (p, p,v) are respectively given through the terms:
t _—2/5 -2 3 | t - _113
A + 7 v-1 A t+ T v-1 20’ +7\
gro= (1) T s - (H) T Blo- (B2R) 7T aso
To 70 To

~ Aren
This proves that all the quantities p, [v|, p are decreasing functions of time. (But M(t) = 7 (t) = <f‘i7—°) =

70

2
t+710 3vy—1 . . . .
(—TO ) is an increasing function).

Also, we have: k] = k — ko and \; must be negative, so that x and &} have the same sign. The exponent
2k/K} is positive, thus p is an increasing function of |a|. _
Let z = z,(t) = M(t)a. Now with usual Euler coordinates, we can give relations (147) in a simpler and

“classical” form (similar to “usual” self similar solution, see for example [11]): the velocity is v(z,t) = vo ti"tow,
thus the radial component is v, = vg t—fr"%r, r = |z| and we have:
2
to \° 1 to \°T2 1
W) =po [ 2-) —, 1) = , 147’
oot = () e s@d=m () (147)
with new constants k, s,k + 1 = —2k/k] = 21 +4, s = 5772_-_—1 (3 +2(ko/x})) thus we have:
2k

k=-21p-3, s=

_37_1.

Recall also (148) with A given by (145), that is A = (k + 1)/3(y — 1).

We emphasize that we did not assume a priori that the evolution was radial! Again the solution is non
singular at 0.

The case with magnetic field. Self similar solutions of the simplified MHD equations

Our self similar solution of the MHD equations is given by (139), with

-2 -8

A t+ 7 A t + 7 3
ﬂfao(t) = ( . 0) ’ %e(t) = ( p 0) ) t+ 70 3
0 0 " with M(t) = (—) .
70

Bi’i(ﬂ:(””)_%, Bf(t)=<t+T°)_ ,

70

(151)

All quantities p, |v|, |H|,p) are decreasing functions of time, except for M (t).
(a) Let U%(a) = U(a, t)lt=0, U%(a) = (p°(a),v°(a), H'(a),p°(a)).
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These are the initial conditions. Then U(t) can be written:
Ut)=2z@tU° t>0,

with

—2 —1 -
2200 1401 130 A t+ 7 t+m\ P [t+m
2() = (B2, 1685, 17, %"):(( o) (HEm) ()

with the identity matrix I. Note that Z(t)t>o is not a semi-group since
Z(tl)'Z(tz) #Z(tl-*—tg), Z(t1)~Z(t2) %Z(tl'tQ).

(b) Let (using polar coordinates):

U%a) =U°(lal,0), a= ﬁ ez =82,
a

and let (as initial conditions on the unit sphere):

U%) =U%(1,0) = Uo(a)laez.

Then the initial conditions U%(a) can be expressed with U°(a) and A (|a]):
U°a) =U°(jal, @) = A(la]) U%(a),
A(lal) = (laf/=, I|al, I|a|*/, o]/ ),

with ko/k} = (k — k') /K] = k/K} — 1 so that taking v = k/k] + 2, and vy > 2 we have

A (|a|) — (ia|2*€u/‘€'1’Iial’jialn/a;’ ial:'n/m;) .

3

(152)

t+ 10 -3
T—O) ) (153)

(154)

(155)

(156)

(157)

(158)

Note that A (]a]) is a multiplicative group, which is a representation of the multiplicative group R*

A(la1] - |az]) = A (Jaa]) - A (Jaz]) -

(159)

(c) Finally U%(a) is obtained by solving the equations (107, 111, 117), so that our solution of the MHD equations

is given by:

U (t lal, @) = Z(t)A (jal) U%(a).

(160)

Note that this solution is regular with time, for all ¢ > 0, and even for ¢ > —7q, with a singularity at ¢t = —7.
We emphasize that the solution is not singular at ¢ = 0, contrarily to usual self similar solutions.
Now using the Euler variable z for z,(t) we obtain a simpler form to (139) [like (147’)], the velocity is

v(z,t) = vo {5, thus the radial component is v, = vo {57, r = |z| and we have:

1

p(x,t):po(a)(tioto)s ;;1;5 p(x,t)=po(a)( to

(s+2)/2
to 1 x
H(z,t) = Ho(a) <—t_+ to) r(R+1)/27 a = 7 r=|z|,

t+to

)s+2

k+1?
" (161)
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with new constants k, s, k+ 1= —2x/k} = =219 +4, s = (2/(3v — 1)) (3 + 2ko/x}) thus:

2k 2k

k=-2 = — —
vok3, §=-ay 3

Recall that Hy = (H,, Hs) is given in the TE (resp. TM) polarization by (122) [resp. (123)], with the conditions
on (vg,n): vy < —n —2,n >0, n < —yy — 2, for TE polarization, vy > 3/2 for TM polarization.

Then (po, po) are given by (126, 128) in the TE polarization, by (129, 131) in the TM polarization [with v3
for v2 in (128, 131)].
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