@article{M2AN_1999__33_5_1033_0, author = {Amara, Mohamed and Bernardi, Christine}, title = {Convergence of a finite element discretization of the {Navier-Stokes} equations in vorticity and stream function formulation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1033--1056}, publisher = {EDP-Sciences}, volume = {33}, number = {5}, year = {1999}, mrnumber = {1726723}, zbl = {0956.76040}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_5_1033_0/} }
TY - JOUR AU - Amara, Mohamed AU - Bernardi, Christine TI - Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 1033 EP - 1056 VL - 33 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_5_1033_0/ LA - en ID - M2AN_1999__33_5_1033_0 ER -
%0 Journal Article %A Amara, Mohamed %A Bernardi, Christine %T Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 1033-1056 %V 33 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_5_1033_0/ %G en %F M2AN_1999__33_5_1033_0
Amara, Mohamed; Bernardi, Christine. Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 5, pp. 1033-1056. http://www.numdam.org/item/M2AN_1999__33_5_1033_0/
[1] Error indicators for the Navier-Stokes equations in stream function and vorticity formulation. Numer. Math. 80 (1998) 181-206. | MR | Zbl
, and ,[2] An optimal C0 finite element algorithm for the 2D biharmonic problem: theoretical analysis and numerical results. Numer. Math. (submitted). | Zbl
and ,[3] Méthodes d'éléments finis avec joints pour le problème de Stokes en formulation fonction courant - tourbillon. Ph. D. thesis, Université Pierre et Marie Curie, France (1997).
,[4] A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. | MR | Zbl
and ,[5] Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12 (1992) 565-608. | MR | Zbl
, and ,[6] Mesh adaptivity in finite elements by the mortar method. Internal Report 94029, Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, France (1994).
and ,[7] A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | MR | Zbl
, and ,[8] Finite dimensional approximation of nonlinear problems, Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR | Zbl
, and ,[9] Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1991). | MR | Zbl
,[10] Neumann and mixed problems on curvilinear polyhedra. Integral Equations Operator Theory 15 (1992) 227-261. | MR | Zbl
,[11] An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. 33 (1979) 235-271. | MR | Zbl
and ,[12] Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR | Zbl
and ,[13] Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. | MR | Zbl
and ,[14] Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR | Zbl
,[15] A mixed method for fourth order problems using linear finite elements. RAIRO Anal. Numér. 12 (1978) 85-90. | Numdam | MR | Zbl
,