Existence of a solution for a nonlinearly elastic plane membrane “under tension”
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 5, pp. 1019-1032.
@article{M2AN_1999__33_5_1019_0,
     author = {Coutand, Daniel},
     title = {Existence of a solution for a nonlinearly elastic plane membrane {\textquotedblleft}under tension{\textquotedblright}},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {1019--1032},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {5},
     year = {1999},
     mrnumber = {1726722},
     zbl = {0966.74043},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_5_1019_0/}
}
TY  - JOUR
AU  - Coutand, Daniel
TI  - Existence of a solution for a nonlinearly elastic plane membrane “under tension”
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 1019
EP  - 1032
VL  - 33
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_5_1019_0/
LA  - en
ID  - M2AN_1999__33_5_1019_0
ER  - 
%0 Journal Article
%A Coutand, Daniel
%T Existence of a solution for a nonlinearly elastic plane membrane “under tension”
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 1019-1032
%V 33
%N 5
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_5_1019_0/
%G en
%F M2AN_1999__33_5_1019_0
Coutand, Daniel. Existence of a solution for a nonlinearly elastic plane membrane “under tension”. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 5, pp. 1019-1032. http://www.numdam.org/item/M2AN_1999__33_5_1019_0/

[1] S. Agmon A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math. 17 (1964) 35-92. | MR | Zbl

[2] P.G. Ciarlet, Mathematical Elasticity, I, Three-Dimensional Elasticity. North Holland, Amsterdam (1988). | MR | Zbl

[3] P.G. Ciarlet, Mathematical Elasticity, II, Theory of Plates. North Holland, Amsterdam (1997). | MR | Zbl

[4] P.G. Ciarlet and P. Destuynder, A justification of a nonlinear model in plate theory. Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 227-258. | MR | Zbl

[5] D. Coutand, Existence d'un minimiseur pour le modèle "proprement invariant" de plaque "en flexion" non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 245-248. | MR | Zbl

[6] D. Coutand, Théorèmes d'existence pour un modèle "proprement invariant" de plaque membranaire non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 1181-1184. | MR | Zbl

[7] D. Coutand, Existence of a solution for a nonlinearly elastic plane membrane subject to plane forces. J. Elasticity 53 (1999) 147-159. | MR | Zbl

[8] J. Diestel and J.J.Jr. Uhl, Vector Measures. Math. Surveys, AMS 15 (1977). | MR | Zbl

[9] D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal 124 (1993) 157-199. | MR | Zbl

[10] G. Geymonat, Sui problemi ai limiti per i sistemi lineari ellitici. Ann. Mat Pura Appl. 69 (1965) 207-284 | MR | Zbl

[11] A.E. Green and W. Zerna, Theoretical Elasticity. Oxford University Press (1968). | MR | Zbl

[12] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | MR | Zbl

[13] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967). | MR