@article{M2AN_1999__33_5_1019_0, author = {Coutand, Daniel}, title = {Existence of a solution for a nonlinearly elastic plane membrane {\textquotedblleft}under tension{\textquotedblright}}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1019--1032}, publisher = {EDP-Sciences}, volume = {33}, number = {5}, year = {1999}, mrnumber = {1726722}, zbl = {0966.74043}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_5_1019_0/} }
TY - JOUR AU - Coutand, Daniel TI - Existence of a solution for a nonlinearly elastic plane membrane “under tension” JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 1019 EP - 1032 VL - 33 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_5_1019_0/ LA - en ID - M2AN_1999__33_5_1019_0 ER -
%0 Journal Article %A Coutand, Daniel %T Existence of a solution for a nonlinearly elastic plane membrane “under tension” %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 1019-1032 %V 33 %N 5 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_5_1019_0/ %G en %F M2AN_1999__33_5_1019_0
Coutand, Daniel. Existence of a solution for a nonlinearly elastic plane membrane “under tension”. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 5, pp. 1019-1032. http://www.numdam.org/item/M2AN_1999__33_5_1019_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math. 17 (1964) 35-92. | MR | Zbl
and ,[2] Mathematical Elasticity, I, Three-Dimensional Elasticity. North Holland, Amsterdam (1988). | MR | Zbl
,[3] Mathematical Elasticity, II, Theory of Plates. North Holland, Amsterdam (1997). | MR | Zbl
,[4] A justification of a nonlinear model in plate theory. Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 227-258. | MR | Zbl
and ,[5] Existence d'un minimiseur pour le modèle "proprement invariant" de plaque "en flexion" non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 245-248. | MR | Zbl
,[6] Théorèmes d'existence pour un modèle "proprement invariant" de plaque membranaire non linéairement élastique. C.R. Acad. Sci. Paris Sér. I 324 (1997) 1181-1184. | MR | Zbl
,[7] Existence of a solution for a nonlinearly elastic plane membrane subject to plane forces. J. Elasticity 53 (1999) 147-159. | MR | Zbl
,[8] Vector Measures. Math. Surveys, AMS 15 (1977). | MR | Zbl
and ,[9] A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal 124 (1993) 157-199. | MR | Zbl
, and ,[10] Sui problemi ai limiti per i sistemi lineari ellitici. Ann. Mat Pura Appl. 69 (1965) 207-284 | MR | Zbl
,[11] Theoretical Elasticity. Oxford University Press (1968). | MR | Zbl
and ,[12] The nonlinear membrane model as variational limit of nonlinear three dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | MR | Zbl
and ,[13] Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris (1967). | MR
,