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ON THE COMBINED EFFECT OF BOUNDARY APPROXIMATION
AND NUMERICAL INTEGRATION ON MIXED FINITE ELEMENT SOLUTION

OF 4TH ORDER ELLIPTIC PROBLEMS WITH VARIABLE COEFFICIENTS

PULIN K. BHATTACHARYYA1 AND NEELA NATARAJ2

Abstract. Error estimâtes for the mixed finite element solution of 4th order elliptic problems with
variable coefficients, which, in the particular case of aniso-/ortho-/isotropic plate bending problems,
gives a direct, simultaneous approximation to bending moment tensor field ^ = {ipij)i<ij<2 and
displacement field lu\ have been developed considering the combined effect of boundary approximation
and numerical intégration.
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1. INTRODUCTION

In [5] a new mixed finite element method for 4th order elliptic partial differential équations with vari-
able/constant coefficients defined in convex polygonal domain, from which the mixed method scheme of Hellan-
Hermann-Miyoshi [15,22,23,28] for the biharmonic problem in convex polygonal domain can be retrieved as a
particular case with a proper choice of coefficients dijki of the équation [see (2.2)], was developed with all details
of mathematical analysis of convergence. This mixed finite element method found its application in the mixed
method analysis of shell problems in [31] and also spécifie mention in [33]. But for the same isotropic plate
bending problem, the mixed method scheme of [5] and that of Hellan-Hermann-Miyoshi are different. Error
estimâtes of order O(/im"1) have been obtained in [5] under the assumption that an exact intégration of the
intégrais of the bilinear forms is possible, the domain being a convex polygonal one (ie, no approximation
of the boundary is necessary), the convexity of the polygonal domain (in all papers) being a requirement for
the regularity [21,24] of the solution on which the proof of the existence of solution of the continuous mixed
variational problem and error estimâtes are based. But in many practical situations both approximation of
the curved boundary of the convex domain by a polygonal one or some other suitable curved boundary and
numerical intégration for the évaluation of bilinear forms are to be performed. In such situations an estimate
for the combined effect of the numerical intégration and approximation of the curved boundary of the convex
domain on the mixed finite element solution of the problem is essential. Such estimâtes for classical finite ele-
ment methods of solution of second order problems have been obtained in [17,19,32,35,36,38^0], and of fourth
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order problems in [8,27], but to our knowledge such results for mixed finite element methods for fourth order
problems are conspicuous by their absence in published research literature. Moreover, construction of estimâtes
for these combined efFects on mixed method solution for fourth order problems is associated with mathematical
difficulties. The present paper contains new, original results in this direction. For other mixed/hybrid schemes
for this fourth order elliptic problem, we refer to [6,7,10-12,29].

2. MIXED VARIATIONAL PROBLEM

Let Cl be an open, convex, bounded domain in M2 with Lipschitz-continuous curved boundary F, piecewise
of Cm class [1,17,21,32,38] m > 3, in which we consider the boundary value problem (P): for given ƒ G L2(Q,)y

find u such that:

(P) : Au = fmft, u|r = ( ^ ) | r =0 , (2.1)

where

2 2 2 2 fû f)2
f ^ V *? ƒ 1 1 ' T * 1 ^ ~ y y y y ^^^—^-^^^^^^— ( / H f • » i j — ^ . ^ — - ™ _ ! { ty* \ ~~' ' 1 / 1 ' * j i 7 / * * l F I I T * J \7 *Y* —̂ \f if s \

(In (2.2) and also in the sequel, Einstein's summation convention with respect to twice repeated
indices 1 < i,j, k,l < 2 has been followed), coefficients dijkt satisfy the following conditions [5]:

(Al) aijki e C°(Ö); aijki > 0; aijki(x) = akHj{x) = ajiki{x) = ajük(x) \/x G Cl;

( A 2 ) 3 a o > 0 suchthat VÇ - (61^12,61,62) G M4 with &i = £12, Oijki(x)Cijîki > «OHÇIIR* Va; € Ö.

Then, under (A1-A2), the corresponding Galerkin variational problem ( P Q ) :

For given ƒ e L2(tl), find u 6 iïg(ft) [1,17,21,26,32] such that

( P G ) : a(u,t;) = i(t;) V.; G H0
2(Q), (2.3)

where

= / aijkiuyijvMdÜ = a(v,u) Vu, f G i?o(fi)ï (2-4)

Vî;eifo
2(fi) (2.5)

n

has a unique solution [4,20].
Introducing Hubert spaces H and V of admissible tensor-valued functions:

• H = { $ : $ = (<t>ij)itj=ia) <kô = fa £ L2{Q) ViJ = 1,2} (2.6)

with

||§,n + ||^2||2,n V $ £ H ; (2.7)
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« V = { $ : $ e H , ^•Gff1(f ï)Vi, j = l 1 2 } c H (2.8)

with

ll*llv = ll*lli,n = ll*nlli,n + 2||0i2||Ï,n + ||&2||?,n V$ € V, V ^ H;

and

• W = H^Q) with \\xWw = IMIi.n VX e W7 (2.9)

we associate to ( P Q ) , the continuous Mixed Variational Problem (Q) developed in [5] as follows: For given
ƒ G L2(Q), find (*, u) e V x W such that

, * ) + 6(*. «) = 0 V $ G V, . ,

where A(-, •) : V x V —>- M, 6(-, •) : V x W —> R are continuous bilinear forms defined by:

) = ƒ Aiwrlarfki dQ = A($, *) V ^ e V c H ; (2.11)

, x) - ƒ ^jjX.i dfi V$ € V, V x e W; (2.12)ƒ
n

coefficients Â -fc/ — A^fci(^) are defined in terms of aijki satisfying the following properties [5]:

• Aijki e C0(H), Aijki(x) = AkHj(x) = Alkij(x) = Alkji(x) Vi, j,fc,i = 1,2, Vx G Q, (2.13)

• 3ao>0 such that V^ = (61,62,61,62) e R4 with 61 = 62, Aijki(x)^^ki > ao\\i\\i* Vx e Ü. (2.14)

• Va; G Ö, Ve= (61,62,61,62) € M4 with 61 = 62, VÇ - (61,62^21,(22) e M4

with C21 = C12, Aijki(x)aijmn(x)ÇmnÇki = Çijùj- (2.15)

Proposition 2.1. [5]

(i) 3a > 0 such that

A(*,$) ^all^lllï V $ 6 V s H . (2.16)

(ii) 3^ > 0 suc î that

^ I ^ i > /3||xl|i,n Vx € W (2.17)

(iii) (Q) has at most ont solution (*,u) G V x W.

Remark 2.1. (2.17) is Babuska-Brezzi condition [2,13,14,30].
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Since A(-, •) is not V-elliptic, (Q) is not well-posed a priori in gênerai. But we have

Theorem 2.1. [5] If the solution u G H§(Ü) of Galerkin variational problem (PG) belongs to H3(Ü) fï
and ipij = aijkiu^ki £ -ff1 (O), Vi,j = 1,2, then (Q) ftas a unique solution ($,u) G V x W.

Conversely, if (Q) /&o$ a solution (^,u) 6 V x VF; (which will be a unique one by virtue of Proposition 2.1),
the second component u will be the unique solution of ( P G )

utij = Aijklipkl \/iJ = 1,2. (2.18)

Examples.

1. Biharmonic problem
For â -fc; defined by: a^* = 1; a±2i2 = 2̂121 — «2112 = 1̂221 = 1/2; a^^; = 0 otherwise, which satisfy the

assumptions (A1-A2) we get the Dirichlet problem of the biharmonic operator A = AA. The coefficients Aijki
are defined by: Aan = 1; A1212 = ^2121 = ^2112 = ^1221 = 1/2; Aijki = 0 otherwise.

Then, the corresponding bilinear form A(-, •) in (Q) is as follows:

A(9^) - ƒ ^ & ; d f i V^ - (^) i j=i ,2 , * - (&j)i,j=i,2 € V. (2.19)
n

In this particular case, the algorithm (Q) reduces to the Hellan-Hermann-Miyoshi (H-H-M) algorithm [15,28]
for the biharmonic équation, Le. the solution (^,14) G V xW of the problem (Q):

f farfijdn -f f fcjjujdn = 0 V$eV, (2.20)

v)Oln V^Glf, (2.21)

is given by: u, * = (^ij)*,i=i,2 w i t n V7^ = a>ijkiu,ki = «,ÏJ Vi,j = 1,2, where u e 50
2(fî) H iJ3(i7) is the

solution of the problem ( P G ) corresponding to the biharmonic équation.

Remark 2.2. If u is the deflection of the bent elastic plate, then ipij = uyij (i,j = 1, 2) dénote the components
of the change in curvature tensor, but not the bending and twisting moments in the plate in gênerai.

2. Plate bending problems

(i) Anisotropic case [4,25]:

— «2121 = ^2112 = £*66, «1112 = «1211 = «2111 — «1121 = ^16,

«1222 — «2122 = «2212 = «2221 = ^ 2 6 Ï «2211 = «1122 = ^12 (2.22)

where Dió = Dij(xi,x2) V(xi,x2) e Ù dénote rigidities [25] defined by Dtj = B^t3/12 (i = 1,2; j = 1,2,6),
the Bij's being expressions in terms of elastic constants of the generalized Hooke's Law for the anisotropic
material of the thin plate, t — t(x\,X2) being the thickness of the plate at the point (xi, x%) € fl, such that

0,

<i,j< 2, JDI6 + D26 < D66. (2.23)
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Define Aijki = Aijki{x) Vx = (a?i, x2) GÖ V i, j , /e, Z = 1, 2 with the help of a^ / as follows:

- D%)/\A{-)\ (i ï j); A1212 = (D11D22 - D\2)/\A{.)\-

= 2(D12D26 - D16D22)/\A{-)\; A1122 = 4(D16D26 - D12D66)/\A(-)\;
A1222 = 2(D12D16 - DnDM)/\A(')\ (2.24)

with \A(')\ defined by

\A(x)\ = 4(D11D22D66 - DuDl6 - DmD2
12 - D22D\% -f D12D16D26)(x), (2.25)

and other Aijki are determined with the symmetry property in (2.13). The corresponding bilinear form A(-, •)
in (Q) is given by:

, *) = ƒ r ^ y r {(£>22 AKS - ^ I 6 )^n + (DiGD26 - D12Dm)^22 + (D12D26 -
n
{(D16D26 - D12D66)i)n + (DuD66 - £>?6)V>22 + (Dl6D12 - D11D26)^i2}<h2 (2.26)

6(-, •) being the same bilinear form in (2.12).
The solution (\I>, u) G V x W of (Q) is characterized by: n is the deüection of the bent plate, ^ = (V;ii)i<iïj<2

is the bending moment tensor with bending moments tpu in the x^-direction (i — 1,2) and twisting moment
^12 = ^2iï «-e. one obtains directly and simultaneously lu' and ipi/s.

(ii) The orthotropic case [4,25,37] can be obtained from the anisotropic case (i) by putting in (2.22-2.26),

Q>iiii = A ï &1122 = &2211 = D\2 = V\D2 = f2-A;

Û1212 = Û2121 = «2112 = Û1221 = A , îjfcz = O otherwise, (2.27)

where A = Sit3/(12(1 - i/az/2)) > 0, (i = 1,2); DT = Gt3/12 > 0, ff = AL^2 + 2D r, G = E1E2/(E1 + (1 +
2i>i)E2) > 0, £?ii/2 = #2^1) ^« and i^, z = 1, 2 being the Young's moduli and Poisson's coefficients respectively,
and the thickness function t G C°(Q) is such that 0 < to < t(xi, x2) < £i, V(xi,X2) G Q. Then

r r i i i i
.Af W, $ ) = = / (^KII — ^1?K22 )011 ~l~ {—^/2^K11 H~ ^K22 )022 ~l~ *012012 d i & V \ t $ G ^ / j

*/ I -^-'l'(l — ^1^2) -^2 (1 — ^1^2) - ^ T
n

(2.28)

and the solution (1ïr,'u) G V x W of (Q) is such that u is the deflection of the bent plate, \I> = (^ïi)ï,j=i,2
with V'ij = dijkiu^ki Vz,j = 1,2 giving the bending and twisting moments in the plate, ie. ipu — A ( ^ , n +
^2^,22), ^22 = ^2(^1^,11 +^,22) are the bending moments in the X\ and X2 directions, the twisting moment
being i\)\2 = ^21 = 2Dtu^2.

(iii) The isotropic case is obtained from the orthotropic case by putting E\ = E2 — E,
v\ — v2 — v and consequently, D\ = D2 = D in all formulae in (ii) for the orthotropic plate. In this case also,
u is the deflection of the bent plate; ipu = Dfa^i 4- ̂ 14,22); ^22 = Diyu^w + u}22), ip\2 = ^21 = D(l — v)uyi2

are the bending moments in the x\ and x2 directions and twisting moment respectively.

Remark 2.3. For D = 1, v = 0, we get H-H-M mixed scheme in (2.20-2.21) [15].
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FIGURE 3.1. x Points Pi G T nTh(l < i < Ne) at which Cm - smoothness does not hold.
• Points Pi e F n Th(Nc + 1 < i < N(Th)) are additional vertices of Th.

3. MIXED FINITE ELEMENT PROBLEM (Qh) WITH APPROXIMATION
OF THE CURVED BOUNDARY T AND NUMERICAL INTEGRATION

3.1. Triangulations rh and T£x a c t

Let Th be a (straight) polygonal boundary approximating F such that

rh c n, rh n r = {P,}^ u (3.1)

where V(Th) is the set of all vertices (corner points) of F^ with Card(y(F^)) = N(Th), the set of all corner
points {Pi}^Ji, at which Cm-smoothness (m > 3) does not hold, being its proper subset.

Let Qh C M2 the domain interior to F^ such that

(3.2)

is the closed convex polygonal domain contained in Û (see Fig. 3.1).
Let Th be an exact, admissible, regular, quasi-uniform [3,17] triangulation of Ùh such that

where

Üh = UTeThT C Ù with Th - rb
h U

r\ — {T : T E Th, exactly two vertices CLI^T and <22,T of T lie on F^ n F or
equivalently only one side of T is a part of

= set of all boundary triangles of Th]

(3.3)

(3-4)

{T : T E Th is an interior triangle i.e. atmost one of its vertices lie on
set of all interior triangles of r̂ ,. (3.5)
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FIGURE 3.2

Let T£ dénote the set of all curved boundary triangles T obtained from the boundary triangles T G r£ by
replacing the straight boundary side of T by a part of F joining the two boundary vertices on Th n F, the other
two sides being the same ones of the corresponding boundary triangle T G r£. (See Fig. 3.2.)

Then, r^xact = r£ U r°, r° C Th being the set of all interior triangles defined in (3.5), dénotes an exact
triangulation of Ù = Q U F. i.e.

Ü = UperexactT, Üh = U T E T ^ , Card(^) = Card(r£). (3.6)

3.2. Référence triangle T and affine mapping FT * T > T

Let T be the référence triangle with vertices ai = (1, 0), â2 = (0,1), a3 = (0,0) and VT G Thj FT : f —> T
be an invertible affine mapping from T onto T G r^ defined by:

Vz G T, FT{x) = BTx + bT = xeT, (3.7)

such that

FT(âi) = Oi.r, 1 < i < 3, {a i )T}Li being the vertices of T G rfc, (3.8)

[J(Fr)] = ^ T is the invertible 2 x 2 Jacobian matrix and Jacobian J(FT) = detBr > 0, (3.9)

V0 G PmiT), 3<p G Pm(T), Pm(X) being the linear space of polynomials of degree < m defined on K = T or T,
such that \/x G T with x = i^(x),

<j>{x) = 0 • J F T ( ^ )
 == 4*{x) w i t h <p = (j> • -Fj7, <fi = <p • Frp . (3.10)

Thus, under the affine mapping i*V defined in (3.7), r^ is affine-equivalent to T, i.e. r^ is an affine family of
triangles and hence, an exact triangulation of Ùh = fi>h U-F^.

3.3. Numerical intégration formulae

Let

J x X~JLW"
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be t w o quadrature schemes with p o s i t i v e weights wn
% > 0 and évaluation points bn G T ( Ï = 1 , 2 , l < n < Ni).

The quadra ture scheme (3.11) exact for P&fô) for i — 1 (resp. P2CÎ1) for i = 2) will be used in the évaluation
of the bilinear forms of the mixed finite element problem in the sequel. Then,

/ <f>{x)dx = / fa) det(BT)d
Ni

i = l

with w^T = det(BT) wj > 0, b\tT = FT(bn) e T, 1 < n < Ni, i = 1,2; is obtained from (3.11) under
invertible affine mapping FT in (3.7-3.10).

To each fi^, we associate auxiliary infinité dimensional Hilbert spaces V(Q/i) and H^Cth) defined by:

• V(flh) = { $ : $ = (^)ij=i,2, <Aü = 4>ji € ^ ( î î h ) Vt,j = 1,2} (3.13)

with

• ^ ( O O - {̂  : v € ff^fih), v|rh = 0} with \\v\\Hi(ah) = ||v||i,nfc, (3.14)

and the auxiliary continuons bilinear forms

A(-, •) : V(nft) x V(flfc) —^ K, 6(-, •) : V(ï2ft) x f T 1 ^ ) —^ M

defined by:

,*) = f Aijkifcrfki dnh with |Â(*,$)| < Mll^Ho.nJI^IIo.fiH V$, * G V(fih); (3.15)

ƒ ^i,iX,idîîh with|6(*,X)l <m||$| |i i nj |xl|i,nh V $ G V ( ^ ) , V* e ff1^). (3.16)

And to each Th of Q^, we associate the following finite dimensional subspaces:
o Ù T € T h } c H 1 ( n h ) ; (3.17)

• V f t = {$h : $ ^ = (4>hij)iij=1,2, cj>hij = <phji G Xh V», j = 1,2} c V(fÏfc) (3.18)

with

• Wh = {Xh-Xh £Xh, Xh irh= 0} C H^(nh) with \\xh\\wh = ||Xfclli,nh, (3.19)

in which we have replaced the essential boundary condition x 4-r in the définition of W in (2.9) by the boundary
condition Xh ivh in (3.19).
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3.4. Extensions

Let T G r£ c r/ l
exact be a curved boundary triangle containing the corresponding boundary triangle T G

T£ C Th with T C T (see Fig. 3.2). For </>T = (j>h 4/rG ^ ( T ) with (j>h G X^, ^ is the natural (polynomial)
extension to T of the polynomial 4>T G P2{T) defined by: 0 G P2(T) with 0 ir= 4>T G P2(^)-

Then, to Xh we associate X^ as the linear space of natural (piecewise polynomial) extensions to fl of functions
(f>h G Xh defined in Üh'

• Xh = {4>h : 4>h G C°(n), ^ iflfc= ^ € Xfc, ^ 4 tG P2(T) V T G T ^ C r ^ } C ^ x ( ^ ) ; (3.20)

• Vh = {êh : $ h = {<j)hij)i,3=1,2 with 0h l 2 = ^21 such that 0hij- G X^ Vi, j = 1, 2}; (3-21)

• Wh = {Xh : Xh inhe Wh, Xh in-nh= 0} C H^Q). (3.22)

With the help of numerical intégration formulae in (3.12), we define new continuous, bilinear forms

A^(-, • ) : V h x V ^ R, b^(-, •) : Vh x Wh —> IR

by

X) S < « ,, *h G V h , (3.23)
Terh n=l

and 3Mo > 0 such that

< Mo||*i,||o,nJ|*i.||o,nfc V*fe, $ft € Vh ;

E E< e Vh)VXfe G Wh, (3.24)

and 3m0 > 0 such that

T < mo\\$h\\i,nh\\Xh\\i,nh

Now, to the problem (Q) in (2.10), we associate the following 'Affine' Mixed Finite Element Problem
(Qh) as follows: Find {^h,uh) GVhxWh such that

(O ) A&»>*») + ^ (*h.«fc) = ° V*h G V, ,

where ^^ J ( - , •)> 6^J(-, •) are defined by (3.23) and (3.24) respectively,

</,Xh>o,nh = ƒ /X^ dQh VX^ G Wh. (3.26)

Remark 3.1. We are considering the important situations in which exact intégration of (3.26) is possible.
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Lemma 3.1. Let the quadrature schemes (3.11) with i = 1 and 2 correspond to the définitions of A^1^, -) and
6^J(*,-) in (3.23) and (3.24) respectively.
Then, (a) 3ao > O, independent of h, such that

e Vh; (3.27)

(b) 3/?i > O, independent of h, such that

l 6 H * ^ ) i > f3l\\Xh\\Wh VXh G Wh. (3.28)

Proof. (a) For i = 1, the quadrature scheme (3.11) used in (3.23) is exact for P^T). Then, using (2.14), we
have:

VT G rh,
n ~ l n—l

^ ) + 2#2(&;) +
n=l

= "0 ƒ (0lll + 2^12 + 4>h22) dT =

(b) For i = 2, the quadrature scheme (3.11) used in (3.24) is exact for P2(T). Choose $*h = (Xh,0,0,Xh) with
Xh € Wh.
Then

$^ e Vh with | | ^ | | l l O h = > |̂|Xfcl|i,nfc (3.29)

and

sup JÖÏ̂ iM > Ö p a « 'ÖS^ [-»SM (3.30,

where

^J(*h,Xh)= E E < r M J + (XM)J « T ) > ) E |x/l|?,Twith7>0 [17].
TGr^n^l L J T£rh

= » 6^(*J,Xh) > 7 ^ZlXhllr ^ 7lXfclïinh = 7lx*l?,n.- (3-31)
Terh

Applying Priedrichs' inequality in (3.31), we have

lï,nh- (3-32)
From (3.30) and (3.32), we get

s u p
 | 6fc"ffi'*h ) l > /3iHxfc||i,nh Vxh e Wh with A = -yC(Q)/y/2 > 0.
{} ll*fc||v
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Remark 3.2. The inequality (3.28) is the discrete Babuska-Brezzi condition [13,14,30].

Theorem 3.1. The 'affine' mixed finite elementproblem (Qh) defined by (3.25) has a unique solution (^h, v>h) £
V^ x Wh.

Proof. Since the linear problem (Qh) is defined on V^ x Wh which is a finite dimensional vector space, the
uniqueness of its solution in V^ x Wh implies its existence in V^ x Wh* The homogeneous problem corresponding
to (Qh):

A£"(tf h) * h ) 4- &£"($>>, uh) = 0

has a unique solution ^ih = 0tUh = 0 by virtue of (3.27) and (3.28), from which the result follows.

4. E R R O R ESTIMATES

4.L Auxiliary interpolat ion opera tor

Since functions in H3(Q) n H^(ü) with s > 2 are continuous in Ü with Ùh C Ö and r n T / 1 = V(^h) — set
of boundary vertices of Th = {ai,r}?=1 TGr& [see (3.1)], we can define an auxiliary interpolation operator Vh as

follows: Vx e HS(Q) n fT^ÎÎ), s = 2,3,

P^X e C°(Ùh), VhX ire P2(T), VhX(aiyT) = x K r ) , 1 < i < 6, VT € rh, (4.1)

{a^TJi and {a^x}! being the vertices and midside nodes of T G r^ respectively such that dT\ — [CLI,TI
 a2,r] is the

boundary side of T G r^. Then, from (4.1) it follows that V boundary triangle T G r£, VhX(<^i,T) = 0 (i = 1, 2),
but 7 \ X K T ) = X(a4,r) ^ 0 in gênerai for a4)T = (ai,T + Û2,T)/2. Hence, Vx G i ï s (^) n ̂ ( 0 ) , 5 = 2,3,

), Xh(aitT) = 0 VTerl i = l,2}, (4.2)

) = 0 VT G r^, i = l,2},

and the classical estimate [17] holds: 3C > 0, independent of ft, such that

l l x - ^ x l k n , <Chs-r\X\s,nh (S = 2,3;r = 0,l). (4.3)

(In (4.3) and also in the sequel the same C has been used to dénote a generic strictly positive
constant, independent of ft, having different values at different steps of the proofs.)

But VhX ̂  Wh C Hçjfàh)- Hence, we introducé Wh- interpolation operator Voh defined by:

, s = 2,3, VohX^Co(Üh), V0hXiTeP2(T) VT erh,

V interior node aitT e Slh, VohX i r h = 0. (4.4)

Prom (4.4), it follows that VohX eWhC H^(nh) and we have

Proposition 4.1. Let rh = r^ U T£ be the triangulation defined in (3.1-3.5). Vx € Hs(fL) n if^(îî), s = 2, 3,
let VohX ̂  Wh be defined by (4-4)- Then, the following estimâtes hold:

For s = 2, \\x - VohX\\r,a, < C7i2-Hxlkn (r = 0,1); (4.5)

For s = 3, Wx-VoHxlkn^Ch^-^Wxlhn (r = 0,l). (4.6)
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Proof. Vx € H'(CÏ) n #1(0) , s = 2,3,

II* - PohXlküh < ||x - PhXllo,nh + H'PfcX - PohX||o,nh (4.7)

and

\x-'PohX\i,nh < \x-'PhX\i,nh + \/PhX-'PohX\i,sih, (4.8)

where VhX is defined by (4.1). Then, from (4.3),

||X - PfcXl|o,nh < Cfc'lxkn»; llx - PhXlkifc < Ch-^xU^- (4-9)

From (4.1, 4.3, 4.4), we have: V interior triangle T G T°, (VhX ~ T^ohX) XT— 0, and V boundary triangle

6, a4)x = (ai,T + &2,T)/2 being the midpoint of the boundary side <9Ti of T G r£.
Hence,

and

. I ^X -'PohXli.nn = E I X K T ) | 2 | ^ 4 , T | ? , T - (4.11)

But

||04,T||O,T < C ^ T I I ^ I I O T - ^ r ï I ^ 4 ^ I I ,T < C ' I ^ I I T < C [16,38]. (4.12)

Now, we will find estimate for |x(û4,r)| in (4.10) and (4.11), for which we are to consider the cases 5 = 2 and
5 — 3 separately.

Case 5 = 2. From imbedding results [1] H2(Q) ^ C°>X(Ù) with A G [0,l[, C°>X(Ü) being the linear space
of A-Holder continuous functions in ft. Hence, Vx G H2(£l) n HQ(Q) C C°tA(Ü), with A G [0,1[, |X(Û4)T) —
x(^4,r)| ^ C||&4,r — ^4^11^2 llxlU.fîî where â4)T G F is the point of intersection of the perpendicular bisector of
the boundary side <9Ti = [a^y, Ü2,T] of T G r£ with the boundary dT D F such that \\a,4tT — ̂ ^ H M 2 < C^r anc^
X(«4,T) = 0.

Hence

I X K T ) | < Ch2
T

x\\xhtn VA c [0,1[. (4.13)

From (4.10) and (4.12), for h = maxT^^I/ir}, we have

hT)\\x\\l,n

where J2Terb hr < C meas (Th) for some C > 0, independent of ih'', since Th is a regular triangulation.

=>ÏÏPhX-VohX\\o,nh < C/i2A+1/2 | |x||2,fiwithA€[0,l[. (4.14)
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Similarly, from (4.11-4.13), we get

819

^ \rhA r OhX\l,iih — Kjlb

Hence, from (4.7-4.9, 4.14, 4.15), we get: for A G [3/4,1[,

meas (r)||x|ll,n w i t h

n with A

^|xknh+^2A+1/2 | |xl|2,n] <

C

and

IIX - = lx -

which implies the result.

Case s = 3. Since H3(Ü) <-»• Cl{Ù) = C0'1^), we have ||x||i,oo,n < C||x||3,nVx e H3(Q) n
||Ö4,T ~ Ü4,T||R2 < C/iy, using the mean-value theorem along the line segment [à^T, O4,r] w e have

n ffjUfi), |x(o4,r)| < sup
«6lÖ4,T,O4,r[

Hence, from (4.10-4.12, 4.16),

Ter*

and

(4.15)

- S i n c e

(4-16)

(4-17)

(4-18)
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Thus, from (4.7-4.9) and (4.17-4.18), we get (4.5-4.6):

llx-•PofcXllo,nfc <

L j ( 4 - 1 9 )

and

llx - PohXll?,nh = \X- PohX\i,ah + llx - PofcXllo,nh < Cfc3llxll3,n>

and we get (4.6).

Remark 4.1. There is a loss of exponent of h by 1/2 in (4.6) due to a 'crude' polygonal approximation of the
curved boundary T. Moreover, from the proof of the Case s = 3, we find that it can not be improved upon even
by assuming additional regularity of x *-e. \\x~'PohX\\r,a.h < C^3~r~1/2||x||3,n Vx G Hs(Q)nH^(ü) with 5 > 3.
Hence it suggests to improve the boundary approximation, for example, by isoparametric mapping [9].

We will need the inverse inequalities [14,17,18]: V0& G Xh (resp. <Ê̂  G V^ ), 37* > 0 (resp. ^7 > 0)
independent of h, such that

7* 7
|<£h|i,fifc < -r\4>h\o,nh (resp. l^hli,^ < r l ^ l o , ^ ) (4.20)

and the following important well known estimâtes:

Proposition 4.2. [38] For domains O, and Qh defined earlier such that cüh = fi — Qh wüh h G]0, /io[, 0 < fto <

||xl|o)Wh < ^ H x l l i ^ for some C > 0. (4.21)

Lemma 4.1 (p. 199 [36]). Lei T G r\ and T G r^ be any pair of boundary triangles such ihai T <zT, T G r^xact

being the curved boundary triangle constructed from the boundary triangle T G Th [see (3.1-3.6)]. Suppose that
p = meas (T — T)/meas T. Let p be a polynomial on T ; which is a natural (polynomial) extension to T of the
polynomial 'p' defined on T. Then} 3C > 0, depending only on the degree of p} such that

\\PWlf_T < Cp(T)\\p\\lT \/TGTb
hCrh. (4.22)

Corollary 4.1. Let 4>h € Xh be the natural extension to Ù of the function <j>h G Xh defined in (3.20). Then,
3C > 0, independent of h, such that

and

üjh = Ü- nh} meas(ojh) = O(h2) [38]. (4.24)

Proof The result (4.23) is obtained from (4.22) by summing over all boundary triangles T G r\ with T C
T G T£ and increasing the right-hand side to include all interior triangles T G r£ and considering the fact that
p = O(h) \/rh [36].
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Proposition 4.3.

• Let Aijki e W1'00^) Vï, j , M = 1,2. (4.25)

• Let the quadrature scheme (3.11) with i = 1, which is exact for Pé(T), correspond to the définition (3.23)
of A^x{'% •). Then, 3C > 0, independent of h, such that Va^, $h £ V^,

nfc, (4.26)

where Â(-, •) and A^7(-, •) are defined by (3.15) and (3.23) respectively,

2

Plk=o,n = _ sup Y, H^«lli,oo,f- (4-27)
>fi ci —exact . . , , ^

Proof For fîxed i,j,k,l = 1,2 (ie. no summation is to be understood with respect to twice repeated
indices i,jjk,l ), VT e T^, set

= / Aijkiahij(f>hkidT - Y^wn,T{AijkiVhij4>hki){b\T), (4.28)
j, n=l

-__ ^ Ni

= / ̂ (^^(^^(^df- ^^(S°ïj^w)(^) (4-29)
n=l

1

with

Then

NI f V - ^ 1
\A(ah,$h) - Ah (ah,$h)\ = \ ƒ Aijkicrhij(j)hkidüh - ^ / ^ wniT(Ajjkicrhij<i>hki)(bri,T)\

2

E x—^

V fixed i, j , *, Z = 1,2, oîj, ̂  G P2(f
T)) 3 ^ i G W 1 ' 0 0 ^ ) and hence

V fixed i, j , fe, l = 1, 2, and for fixed cr̂ -, 0^ e ̂ ( T ) , define

f (•) : W 1 ' 0 0 ^ ) —> R by f ( 3 Q ) = £ ( ^ o î i 0 w ) - (4*33)

From (4.32), (4.33) £(-) is a linear bounded functional on WliOO(f) with \\£(-)\\ < C\\<fij<fki\\0tOOtf and f (p0) =

Ê(p0Oij4>ki) = 0 Vpb G Po(r) , since the quadrature formula in (4.29) is exact for P±(f).
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Hence, by Bramble-Hilbert lemma, we have: V fbced i,j, k,l = 1,2 (with no summation),

\£{A^i)\ = | Ê ( ^ o q ^ ; 0 | < C | | ( 7 Î ^ w | | 0 ( T O ( t | ^ | 1 | T O i f . (4.34)

But V fixed T G T/,,

\A^i\hoo,f < ChT\\Aijki\\i,oo,T Vi,j,fc1Z = l , 2 [16] (4.35)

and

\\<fïj<fhi\\o,oo,f ^ I I ^ J I I O ^ T I I ^ I I O ^ T ^C'll^jllo.fll^llo.f (norm équivalence in a f .d.v.s.)

< C(detBr)-1|kWj-||o,r||^w||o,T [16]. (4.36)

Hence, V fixed z,j, fc, l = 1,2,

^((A^iJCoî^w))! < C/irCdetSrJ-^lcrwjIlo.Tll^fcillo.Tll^fcilli.oo.T VT G rh. (4.37)

= > \ET(Aijklahi3<j>hkl)\ < ChT\\ahij\\OiT\\(l>hkihA^i3kÛh^T VT G rh [using (4.30)] (4.38)

T€rh ij,k,l = l

E
< r f ^ l l 4 I L ^I I /T, IL ̂  I I * , IL^,
^ v-̂  »« | | -»* | | x ,oo ,4* | | ü_ / i i | u , a*h il - rt||u,a«h

where

2

||A||1)OO,n>||A|| l iOOinh= sup ^ P ^ I I I ^ T (4.40)

and the result (4.26) follows from (4.31, 4.39, 4.40).

Proposition 4.4. Suppose that the conditions of Theorem 2.1 hold. Then,

| i (* ,*O + &(*h»«) l<^( l + V^)||«||3,n||*fc||i1nh, (4.41)

where Â(-, •) and 6(-, •) are defined by (3.15) and (3.16) respectively.

Proof. From the conditions of Theorem 2.1, u e Hs(ft) H H$(Q) is the solution of (PG) with ̂  = (i/>ij)ij=it2,
ipij = aijkiuM G H1 (ft) Vz, j = 1,2.
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Then, V $h € Vh

f f
J J

f f f — f" ' I
J 13 ij J 13,3 ,i J J

[by virtueof (2.10)]

< ƒ Aijki'ipij(phkidxl + / <j>hij,3u,%dx\ wi th ojh = Î7 — fi^, (4.42)

where «1^ = {4>hij)ij=i,2 G V^ is a natural extension to Cl of <H G V^ defined in (3.21).

• Estimate for the first term on the right-hand side of (4.42)

* 2 r 2 f
/ Aijkiil>ij<f>hkidx\ < ^2 I / Aijkiipij<l>hkidx\ = ^2 I /

since Aijkiipij = Aijkiaijmnutmn — SkmöinU^mn = u,w [see (2.15)].

Then, since u e H3(Ü), $^t G H1 (SI), we can use (4.21).

Hence, for fixed fe, l = 1,2

=*• \ J Aijkrtijfaidxl < Ch2\\u\\3!n\\$hh,nh- (4.43)

• Estimate for the second term on the right-hand side of (4.42)

For fixed i , j = 1,2,

/ iïhijjUjdxl < (meascjh^Wu^hijjh^h < ChWu^hijJWO^H (4.44)

[sinceu,i e iï2(H) ^ C°(Ö), 0 ^ J G L2(^) ==» Ï X ^ ^ J G L 2 ( ^ ) a n d meas(u;h) = O{h2) (see (4.24))].
But for fixed i, j = 1,2

(4-45)
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since'the third inequality in (4.45) follows from H2(£l) ^4 L°°(Q) and the last inequality follows from (4.23).
Then from (4.44) and (4.45),

2

Y ï t n h . (4.46)

Finally, from (4.42, 4.43, 4.46), we get the result (4.41).

Lemma 4.2. Let the quadrature scheme (3.11) with i = 2, which is exact for P2CÔ, correspond to the définition
(3.24) ofb^i-r) andb(',-) be defined by (3.16).

Then, V<I> G V(r^) , 3 a tensor-valued function &h G V^? for which the following hold:

ewhc H*(nh) (4.47)

and BC > 0, independent of h, such that

II* - eh\\r,Qh < C^-iSlIi .n, (r = 0,1). (4.48)

Proof. For <f> e iï1(O/ l), we can associate a </>& e X^ such that

U-Mr^^Ch^UW^, (r = 0,l) (4.49)

for some C > 0 independent of h.
such that

E &k2-2r\\&Alnh = CPh^Ml^ (* = 0,1)

. (4.50)

Define an auxiliary bilinear form #/*(•, •) : ̂  x Wh —> TZ by:

N2

(4.51)
n = l

with tf^)T > 0, 1 < n < iV2, which corresponds to the quadrature scheme 3.11) with i = 2 exact for
and a linear form lh(') '• Wh —> M by:

W^ (4.52)

for fixed éléments ^ G V(fi^), $^ G V^ satisfying (4.50).

B^(-, •) is continuous on Wh x W ,̂ and W^-elliptic.
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In f act,

N2

T6rh n=l

ï = c\fih\itn (since fih = 0 outside Qh)

\1^ (by virtue of Priedrichs' inequality)

= C(Q)\\fih\\liÇlh (since jlh = //h in Qhi jlh = 0 outside îîfe)

> C(Sl)\\t*h\\lnh V ^ e W V (4.53)

(-) is continuous
Hence, from Lax-Milgram lemma, 3 a unique Zh G Wh such that

Wh (4.54)

for fixed $ G V(fih) and <&/, e Vfe satisfying (4.50).

Choose a^ = ( 2 ^ ) ^ = 1 , 2 with zh G W^. Then

ah e Vh with l l ^ l l i , ^ = >/2||^||i Inh, (4.55)

and

^ £"(*h,Mh) [using (4.54)]

= ^ the result (4.47) holds with 9^ = {a_h + $fe) G Vfe) $^ satistying (4.50). (4.56)

• Estimate for ||$ - G^Hi,^

V fixed éléments $ G V(Q^), $/> G V^ satisfying (4.50), we get from (4.53, 4.54) and the continuity of lk(')-

C\\zh\\lah<Bh(zh,zh) <

< <7M||zfc||i,nh||*||1,nh [by virtue of (4.50)]

nh. (4.57)

Hence from (4.55) and (4.57), and the définition of G^, we have

^h < C\\*\\i,nh. (4.58)

h . (4.59)

n . (4.60)

Estimate for | |$ - 0fc||o,nh

Since fi is convex, \/g € L2(Çl), define x G H2(ü) tl HQ(CI) as the unique solution of:

- A x - 9 in n, xlr = 0 with ||x||a,n < C||5||o,n. (4.61)



826 P.K. BHATTACHARYYA AND N. NATARAJ

"izh €. Wh with £h 6 Wh) we have

n = sup \\9\\o,n

Then from (4.61),

- f {AX)-zh d^ - f gzh d̂ 2 \fzh €Wh<Z H^Q)
J J

/

f
(Vx)-^zh dOh = / gzh dnh "izh G Wh, since Zh = 0 in fi — Q^.

J

Hence, using (4.54), we get:

J gzhdnh\ = \ J Vx.Vzfcdîîfcl < | J zh dÜh

nh

~ E
N2

G Wft and for fixed éléments $ G V(Q^), <&h € V^ satisfying (4.50).
Then, for \h = ^o^X € Wh with x e H2(Q) n Ho(fi) defined in (4.4), we have:

and consequently,

J gzh düh\ < I ƒ V(x - dQh\ ~ x)\

• Estimate for the first term on the right-hand side of (4.64)
Using (4.5) and (4.57),

< |X -

(4-61)].

• Estimate for the second term on the right-hand side of (4.64)
Using the continuity of fe(-, •), (4.5, 4.50) and (4.61), we have

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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• Estimate for the third term on the right-hand side of (4.64)

- I ƒ {4>a - Mjx.i&ih - J

< I / {4>ij - 4>hij)tjx,iàx\ < \\(<Pij -

For fixed ij = 1,2 | | ( ^ - 4>hij)jWo.wh < Hij ~~ 4>hij\\i,cj

From (4.23), V M = 1,2, ̂  G XA defined in (3.20),

^ < Ch^Mwh^ < Ch^2\\9h\\ltOh- (4-68)

Then, using (4.50),

WhiihvH < Ch1'2^ - 9h\\ltah + ||#||linJ < Ch^2(\\ni,nh + ||*||i,nj < C^2 | |*| |i | n. (4.69)

From (4.67-4.69), we have

E n . (4.70)

Hence, from (4.67),

n. (4-71)

• Estimate for the fourth term on the right-hand side of (4.64)
2à

(4.72)

with

8 (4.73)
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For fixed ij — 1,2, (fcj ~ <f>hij) E Hl(ü) and hence from (4.21),

But

(4.74)

ij - 4>hij\\ltn = \\<f>ij ~ <l>hij\\itçih + \\<f>ij ~ 4>hij\\itt

•^n + ll-MU

J (4.23)]

, n [from (4.74)].

Hence

Then from (4.73)

Hence,

| 6 (* -* f c , x ) | < C/i||*||iin||xl|2,n<C7/i||fl||oIn||*||lln [using (4.61)]

Substituting the estimâtes (4.65-4.66, 4.71, 4.75) in (4.64) and using the resuit ||$||i,fih <

I / nï, HOI — / nV, AO, I < HhW n\\ ~
||j.,a« i

Then, from (4.62, 4.76), we have

n = sup
2{

<Ch\\9\\i,n.

Since, g_h = (zhöij) with zh e Wh and â ^

Hence

\\9\\0M

, [see (4.56)], we have

tn [from (4.50) and (4.77)]

(4.75)

we have

(4-76)

(4.77)

(4.78)
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Thus, (4.60) and (4.78) establish the result (4.48).

Theorem 4.1.

• Suppose that the assumptions of Theorem 2.1, Propositions 4-3 and 4-4 hold.

• Let {rh} (resp. {r^xact},) be a family of quasi-uniform, regular, admissible triangulations [17] of Ù& = ClhUTh
(resp. Cl = 9, U T ) defined in (3.3) wüh 0 < h < h0, h0 e]0,1[.

• Let the quadrature scheme (3.11) wüh i = 1 [resp. i = 2], which is exact for P±{T) [resp. P2CÎ1)] correspond
to the définition (3.23) of Afi1^-) [resp. (3.24) of bg1 (-,-)].
Then, 3C > 0, independent of h, such that

f J ; (4.79)

(4.80)

where (^, u) G V x W [resp. {^h^h) £ V/,, x Wh] is the unique solution of (Q) [resp. (Qh)]«

Proof Since * lnhe V(îî/j), from Lemma 4.2, 36^ G V^ such that

e Wh (4.81)

and

II* - efc||rinh < C^-HI^Hi.n (r = 0,1). . (4.82)

Then, from (4.81), the définition of Wh, and the second équation of (2.10),

bh^QhiXh) = J1>ijtjXh,iàn = 6(* ,XA) = -</,Xfc>o,n = -(f,Xh)o,nh VXh e Wh with Xh e Wh. (4.83)

Hence using the second équation of (3.25) and (4.83), we have

£" (f,Xh)otnh =0 Vxht Wh. (4.84)
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(4.81-4.83),
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in (3.27), we have for 0^ e Vh corresponding to ^ e V(fth) satisfying

- Qh, #h - Gh) = piu \J>, Plu} Âffy \EfL £)u}
^stn ^ h, ^fij - r i \^î *fi ^ri/

À(Qh> ^h — &h) — Ah (Qh, ^h •

(i&h ~ ©h) uh) [using the first équation of (3.25)]

- &h, u) + \Â(eh, vh - eh) -

- eh, *h - -Sh,u-

A(Qh,Vh-

b(Vh - Qh, (4.85)

which has been obtained by using (4.84) and the définition (4.4) of VohU e Wh- Since the quadrature scheme
(3.11) with i = 2 corresponding to the définition of b^T(-, •) is exact for P2ÇT),

= 0. (4.86)

Kence, applyiiig Lhe trianguiar inequality, the continuity of A(-, •) and 6(-, •) and nnaily dividing both sides by
a||*h - Qh||o,nh, we get from (4.85-4.86):

(4.87)

\Â(eh, *h - eh) - A^(@h, vh - eh)\

Using | |* - Qh||o,nh < Cft||*||i,n [from (4.82)]

||« - Vohu\\i,aK < C7i3/2|M|3)n for u G H3(Q) n H0
2

||*fc - Gfc||i,nk < ^ | | * h - Gfc||o,nh, [from (4.20)],

and [from Propositions 4.3 and 4.4],

, * f c - G h ) | <

) , [from (4.6)],

- G f c | |O lnh

(4.88)

(4.89)

(4.90)
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we have

- &h\\o,nh < c\h\\y\\hÇi + Vh\\u\\3,n + Vh(l (4.91)

with C > 0 , independent of h.
Since ||efc||o,nh < ||* - ®h\\o,nh ,fï, we get from (4.91):

Hence

- */i||o,nh < Ch1'2 |"||u||3ïn + /i1/2||*l|i,nl with O 0, independent of ft. (4.92)

Now, we will prove (4.80).

• Estimate for \\u — Uh\\i&h

From the discrete Brezzi-Babuska condition (3.28) for

nh < sup

But

where

(•, •), we have

(4.93)

> u)

[using (3.25)]

(4.94)
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Applying the triangular inequality and the continuity of the bilinear forms Â(-,-) and 6(-, *) in (4.94), we get
from (4.93):

r sup H(« . , .>)1-^(^ ,^)11} . (4.95)

Then, applying (4.92) and Propositions 4.3 and 4.4, we have

(4.96)

But

n). (4.97)

Prom (4.96) and (4.97),

\\uh - Pohu\\itQh < c\h^2(\\u\\3ta + ^ 1 / 2 | | ^ | | i ) a) + (hs/2 + h + /iV^(l + Vft))|M|3ln + ^l l^ l l i^

< C/t1/2[||u||3)n + /i1/2||*||iïnl. (4.98)

Then,

||w-uh||i,nh < \\u-Pohu\\hnh-h\\VQhu-uh\\hnh < C(h3/2\\u\\3,n + ^1/2||n||3,n + h\\^\\ha)

=>\\u-uh\\hQh < Ch^2(\\u\\3^^h^2\\nun) (4.99)

with C > 0 independent of /i.

Remark 4.2. Error estimate (4.79) [resp. (4.80)] dépends on the estimâtes of the three terms occurring due
to the errors involved with

(i) interpolation;

(ii) approximation of the curved boundary F by the polygon I \ ;

(iii) non-exact intégration

i.e. the terms in the second and third square brackets on the right-hand side of (4.87) (resp. (4,95))
correspond to (ii) and (iii) respectively, and the terms in the first square bracket correspond to (i) and
also indirectly to (ii) [see (4.6)]. Hence, it will be interesting to study the two particular cases:
Case 1: there is no approximation of boundary, in other words F is a polygon, but numerical intégration
is performed, i.e. error due to (iii) is present, but an error due to (ii) is absent;
Case 2: polygonal boundary approximation is made,but no numerical intégration is necessary and hence,
it is not performed Le. error due to (ii) is present, but an error due to (iii) is absent.
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Case 1. F is a (straight) polygonal boundary of the convex polygonal domain ft which is considered in all
papers [4,5,15,28,33] etc, ie .

r = r\, n = nh,ü = üh = uTerhT v/i > o (4.100)

=> error due to (ii) is absent. Moreover, using higher order éléments Le. Pm-elements with m > 2, to construct
finite element spaces, a remarkable improvement in the error estimâtes, i e . \\^ — ̂ h\\o,n — O(hrn~1),
||w — Uh||i,n = O(^m~1), m > 2 can be obtained under some additional assumptions on the regularity of solution
and the use of quadrature schemes with higher degree of accuracy. In f act, (4.100) holds, and Pm-elements with
m > 2 can be-used to define Xh C H1^), Vh c V , ^ C ^ ( Ü ) , ie .

Xk = {Xh : Xh e C°(Ö), Xh ire Pm{T) VT e rh} C ff^îî),

V^ = {$h : $h = (<f>hïj)i<i,j<2 with <j)hij = 4>hji e Xh} C V, (4.101)

Wh = {xh:XheXh,Xhlr=O}cHÏ(Çl).

Then, we use quadrature schemes (3.11) with higher degrees of accuracy:

(A3) A^T(-, •) (resp. &^J(-, •)) defmed by (3.23) [resp. (3.24)] corresponds to the quadrature scheme (3.11) with
i = 1 [resp. i = 2] which is exact for P3 m-2CO [resp. P2m-2(f)].

Following the steps of the proofs of (3.27) and (3.28), we have: 3ao > 0, independent of h such that

i C V; (4.102)

3/?i > 0, independent of h such that

^ ^ ^ Wh C Hl{Ü) (4.103)

and the corresponding (Qh) has a unique solution {$?h, un) G V^ x Wh*
Moreover,

(4.100) _=• !(-,•) = A(;-),'b(;-) = H;-) (4.104)

and

|A(*,$h) +6($ f c ,u)| - |A(*,*h) +6 (* h , u ) | = 0 V$h G Vh c V (4.105)

in Proposition 4.4 by virtue of the fîrst équation (2.10);

^ Wh (4.106)

with V^ and Wh defined by (4.101), since the quadrature scheme used in b^1^, •) is exact for P2m-2(T), m > 2.
Proposition 4.3 is replaced by the following result, whose proof is analogous.

Under (A3), for Aijkl e VFm"1 'oo(^) with m > 2 Vi, j , fc, l = 1, 2, we have

|A(^,aJ - A^($ h ) ^) | < C^-Ml^lknlKllo.n V*h,ah GV.cV. (4.107)

By virtue of (4.100), the interpolation operators Vh and POh defined in (4.1) and (4.4) respectively are now
identical, ie .

VhX = VohX eWhc Hl (ÎÎ) VX e Hs(Q) n H] (ü) with s > 2, (4.108)
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and estimâtes (4.5) and (4.6) are replaced by the classical estimâtes:

VXeH3(n)nHÙ(Sl) w i t h s > 2 , \ \ x - V o k X \ \ r , n < C h $ - r \ x \ s , n ( s > 2 ; r = 0 , l ) . (4.109)

Lemma 4.2 holds with ö^7(-, •) corresponding to the quadrature scheme (3.11) with i ~ 2, which is exact
for P 2 m _ 2 ( t ) . Then, V$ = (<fe)i<^<2 with <j)zj = fo e i T ^ Q ) , m > 2, 3Sh e Vh C V satisfying

^ ^ such that

II* - eh||r,n < Ch^-^m^n (r = 0,1). (4.110)

Now, following the steps of the proof of Theorem 4.1, using assumption (A3) and (4.100-4.110), assuming that
u e üfm + 1(^) D H§(Ü) with m > 2 is the unique solution of (PG) in (2.3-2.4) and (*, u) is the unique solution
of (Q) with * = (^ij)i<i,j<2, V*j = fyi e H™-1^) Wij = 1,2,

J (4.111)

Ik - «hlli.n < Ch^11 ||u||m+i,n + | |*|U-i,n - (4-112)

Estimâtes (4.111) and (4.112) are of the same order O(hrn~1),m > 2 as obtained in [5] (resp. for H-H-M mixed
scheme for the biharmonic problem (2.20-2.21) by Brezzi-Raviart in [15], pages 16-17) under the same regularity
assumptions, when errors due to (ii) and (iii) are absent, i.e. when F is a polygon and exact intégration is
performed.

For m = 1, neither the estimâtes of [5] nor those of Brezzi-Raviart in [15] hold (see Remark 2 of [15],
page 20), but Miyoshi obtained estimâtes of order O{h}/2) for m = 1 in [28], in which the elegant, systematic
mixed method analysis of Babuska-Brezzi-Raviart has not been followed (see also [34])!

Hence, based on Babuska-Brezzi-Raviart mixed method analysis, best available error estimâtes for this prob-
lem using P'2 éléments are of order O(h) [5], when errors due to (ii) and (iii) are absent. Moreover, when
quadrature schemes with higher degrees of accuracy P3m-2(T) for A^1 (-, •) and P2m-2{T) for ö^7(-, •) (m > 2)
are used, the error due to only (iii) is of the order O(/im~1) [see (4.107)].

Case 2. Curved boundary F is approximated by a polygon F^ as in (3.1-3.6), but exact intégration is pos-
sible and performed i.e. only error due to (ii) is present. Since exact intégration is performed, ^4(-, •) —
^r7('>')> b(-7-) = 6^7(',-) and the term in the third square bracket on the right-hand side of (4.87) [resp.
(4.95)] vanishes.

For polygonal approximation F^ to F, we have meas(u^) = O(h2) with IO^ = Ü ~ Qh. Consequently, from
(4.42, 4.44, 4.45) in the proof of Proposition 4.4,

- $ft) u)\ = O(/i3/2), (4.113)

even if Pm-elements with m > 2 are used to define finite element spaces V^ and Wh [see (4.101)]. In other words,
by using Pm-elements with m > 2, the estimate (4.113) can not be improved unless better approximation of F
is made. Incidentally, this is exactly the reason for using P2-elements in the définition of V^ and Wh in (3.18)
and (3.19) respectively.

Again, from Remark 4.1, we find that for

u e Hm+1(Q) n #0
2(fi) C Hm+\fl) n fl^fl), ||u - Vohu\\ltnh = O{h5'2) Vm > 2, (4.114)
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which can not be improved upon unless boundary approximation is improved. Hence, for polygonal boundary
approximation, we find from (4.113) and (4.114) that the estimâtes of order O(/i3/2) can not be improved upon
by any choice of m > 2

(i) in the définition of V^ and Wh in (4.101) and

(ii) in the regularity of solution u E i/m+1(O) D HQ(P) of ( P G ) , ^.e. the optimal case is m — 2.

Finally, the use of the inverse inequality (4.88) in (4.91) is necessary (see [5,14,15,18]) and gives the estimate:

| | * - * h | | o , n h = 0 ( f t 1 / 2 ) , . (4.H5)

which is used to get the estimate:

1 / 2 (4.116)

Thus, for this crude but most important and commonly used polygonal approximation Th to F, there
is a loss in the exponent of h by only '1/2' in the estimâtes (4.115-4.116), the best available estimâtes [5], [15]
based on Babuska-Brezzi-Raviart mixed method analysis being ||\I> — ̂ h||o,n = O(ft), ||u — W/Ï,||I,Q = O(h)
for m = 2, when there is neither boundary approximation nor non-exact intégration (see also Case 1 above for
m = 2). In fact, in [9], the estimâtes ||\P - \^||o,nh = O(h), \\u — Uh\\i,nh = O(h) have been obtained when F
has been approximated by a curved boundary Th constructed with the help of isoparametric mapping, for which
£lh <£ &i & tf- &h and Ùh is no longer convex in gênerai. Consequently, a completely different, independent
analysis has been developed in [9].

Hence, it is obvious from the facts explained above that for polygonal approximation F^, the estimâtes
ll1^ — ̂ h\\o,nh = O{h}^2) and ||u — Uk||i,r2h = O(h}f2) are the 'best' ones based on Babuska-Brezzi-Raviart
mixed method analysis for fourth order problems.

The authors express their special thanks to the référée for all his suggestions for the improvement of the paper and
particularly for pointing out the necessity of substantiation of the interpolation estimâtes in (4.5-4.6).
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