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Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, N° 4, 1999, p. 695-713
Modélisation Mathématique et Analyse Numérique

ERROR ESTIMATES FOR SOME QUASI-INTERPOLATION OPERATORS

RÜDIGER V E R F Ü R T H 1

Abstract. We dérive explicit bounds on the constants in error estimâtes for two quasi-interpolation
operators which are modifications of the "classical" Clément-operator. These estimâtes are crucial for
making explicit the constants which appear in popular a 'posteriori error estimâtes. They are also
compared with corresponding estimâtes for the standard nodal interpolation operator.

Resumé. Pour deux opérateurs d'interpolation de type Clément on donne des bornes explicites sur
les constantes dans les estimations d'erreur d'interpolation. Leur valeurs sont importantes pour le
calcul des constantes dans les estimations d'erreur a posteriori. Elles sont comparées aux estimations
correspondantes pour l'opérateur d'interpolation Lagrangien aux nœuds.

AMS Subject Classification. 65N30, 65N15, 65J15.

Received: October 29, 1997.

1. INTRODUCTION

In the last decade adaptive finite element methods based on a posteriori error estimators have become an
important tool in scientific Computing. The error estimators provide easy-to-compute upper bounds on the error
of the actual finite element approximation. These upper bounds are based on interpolation error estimâtes of
the following form (cf. Sect. 1.1 and 1.2 in [11]):

\\u - hu\\L2{T) <

\\u - hu\\L2{E) <

Hère, k G {1,2},!^ is sortie quasi-interpolation operator, T and E are a simplex and a face thereof, hr and
h E measure the size of T and E, and LÛT and LUE are neighbourhoods of T and E which should be as small as
possible. Note that the interpolate I^u never needs to be computed explicitly. Moreover, for problems in two
and three space dimensions, one may choose for Ih the standard nodal interpolation operator if k = 2. But the
case fc = 1 is the most interesting one, since it does not require any additional elliptic regularity assumptions.

The constants CT,CE appearing in these interpolation error estimâtes are of great importance for a correct
calibration of the a posteriori error estimators. It is the aim of this article to give reasonable explicit estimâtes
of these constants. To this end we analyze two modifications of the quasi-interpolation operator of Clément [7].
The constants CT and cE depend on the element geometry. This dependence is made explicit and computable in
terms of a few element characteristics. Our main tools are a trace theorem and suitable Poincaré inequalities.

Keywords and phrases. Interpolation error estimâtes; quasi-interpolât ion operators.
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As a by-product we obtain an apparently new lower bound for the smallest positive eigenvalue of the Laplace
operator with Neumann boundary conditions on non-convex domains (cf. Eq. (2.6) and Lem. 4.2 below).
For comparison, we also give similar error estimâtes for the standard nodal interpolation operator applied to
iJ2-fonctions.

The quasi-interpolation operators of Clément [7] and of Scott and Zhang [10] can be analyzed in a similar
way by comparing it with the modified Clément-operators. We do not follow this line since the analysis is rather
straightforward and since the resulting constants are larger than the corresponding constants for the modified
Clément-operators.

For related work we refer to [3, 5, 8]. Angermann [3] computes the constants CT and CE for the quasi-
interpolation operator of Scott and Zhang on a uniform triangulation consisting of right-angled isosceles triangles
of equal size. The resulting values are larger than the corresponding numbers of Example 2.5 (1) given below.
Duran [8] in particular dérives estimâtes for the constant &px of inequality (4.1) below. His technique is different

from ours and is based on generalized Taylor expansions. The resulting estimâtes for Cpx are larger than ours
(cf. the remark at the end of Sect. 4). Carstensen und Funken [5] also consider the quasi-interpolation operator
Ph of équation (2.11) below. Their interpolation error estimâtes are also based on Poincaré estimâtes of the
form (4.1). But their technique for establishing these estimâtes is different from ours. Their approach is based
on suitable extension operators whereas our main tooi is a réduction to inscribed circular segments (cf. Sect. 4).
The resulting interpolation error estimâtes are rather similar to ours. Carstensen and Funken only treat the two
dimensional case but consider genera! Lp-spaces. With minor modifications the analysis of Sections 3-6 below
could also be performed within the Lp-framework. But we choose to stay within the Hilbert space framework
since this simplifies the exposition and clarifies the analysis.

The outline of this article is as follows. In Section 2 we introducé the necessary notations and present our
main results. In Sections 3 and 4 we prove a trace theorem and give bounds on the constants appearing in some
Poincaré inequalities. In Sections 5-7 we prove the results which were announced in Section 2.

2. NOTATIONS AND MAIN RESULTS

Consider an open, bounded, and connected polyhedron Q in Mn, n > 2, with a Lipschitz boundary F. The
boundary F consists of two disjoint parts T& and F̂ v such that F = F^ U F^; F TV rnay be void. Set

Hp(Q) := lu e H1^) : u = 0 on F

where L2(Ü) = H°(fl) and Hk(Ü),k e N, dénote the standard Sobolev spaces (cf. [2]). For any 1 < p < oo
and any subset u> of ft which is measurable with respect to the n- or (n — l)-dimensional Lebesgue measure, we
dénote by ||.||p;W the standard Lp(üj)-norm. The &-dimensional Lebesgue measure is denoted by /i^.

Consider an admissible partition Th of ft into n-simplices. Here, as usual, admissible means that any two
simplices in Th share at most a complete /c-face, 0 < k < n — 1. Moreover, Th must be consistent with FAT, *.e.,
TD and FJV each are the union of (n — l)-faces of simplices in Th- Dénote by J\fh and £h the set of all vertices
and (n — l)-faces, resp. in Th- Both sets can be decomposed as

,n h,N ^ ) ) £h = ShiQö£hiN U £htD

with

Nh,N = [xGAfh:xG FAT}, MhjD - j x € J\fh : x G F D | ,

£h,N = {Ee£h:Ed Fiv}, ShtD = {E € £h : E C TDy

For any 5 G Th U £h we dénote by Af(S) and hs the set of its vertices and its diameter, respectively. Finally,
£(T) dénotes the set of all (n — l)-faces of T e Th- For any vertex x e Mh dénote by Xx the nodal basis function
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corresponding to x, z.e., the continuous, pieeewise linear function w.r.t. Th which takes the value 1 at x and
which vanishes at all other vertices. Set u)x :— suppAx. u)x is the union of all simplices which have x as a vertex.
Since cox is star-shaped w.r.t. x there is a closed subset Sx of the unit sphère Sn~l and a continuous function

Ml such thatrx : Y,

Set

= lx + ra : a e S x , 0 <r< rx(a)\

hx := maxrx(<r), px := min rx(a).
( JG2 crÇS

(2.1)

(2.2)

If x is an interior vertex, we have Dx = S71"1. Otherwise, Sx is a submanifold of Sn x and its boundary relative
to Sn~1 is a pieeewise smooth (n — 2)-dimensional manifold. For a e R+ set

If x is an interior vertex, B^x is the standard unit bail in W1. Otherwise, it is a sector of the unit bail. Note
that, for vertices on the boundary, the shape of B^x only dépends on Q, and not on the particular partition
%- We split J\fh,D and J\fh,N hito disjoint subsets J\fh D, J^hD an<^ -^hN^ -^hN*> resP* corresponding to those
boundary vertices with a convex B%x and those with a non-convex ü?sx. With every vertex x and every simplex
T we associate several quantities which describe the local geometry of Th'-

K l x - = —

(2.4):= max U„(T)

:= max xi —
2j:= max

EeS(T)

Hère, |.|2 dénotes the Euclidean norm in Mn.
Moreover, we will frequently refer to the following Poincaré constant

cP,x,x :=sup{ ^ " ^ :u u =

Note, that cP
2

x is the smallest positive eigenvalue of the Laplace operator on B^x

conditions on dB-£x> The following estimâtes for cp^x are given in Lemma 4.2 below:

(2.5)

with Neumann boundary

cp,x <

5/9

2/?r

2/TT

1.884

3.602

1 / 2 f l 6 2 2 11! 7

- 3 n / 2 < — + - max < - , } }
, 2 \ T T 2 n \ n + 2 n - 2 J ƒ

if x E

if x €

if x E

if x €

if x E

U

U

and n = 2,

and n > 3,

and n > 2,

and n = 2,

and n - 3,

and n > 4.

(2.6)



698 R. VERFÜRTH

In order to formulate our main results in a compact form we introducé two fonctions KitTl,K2yn € C(M+,
and a number cx by

1 1 _ 2 1 1 1 _2

max<- — -z zAnz~~-\-~-z z

max < - 7 — ^ \zn" -z-*\, —^ | -z"-* - - + ^ ~ ^ " 2 ] } . if n > 3, (2.7)
n(n + 2) L J n - 2 [_n 2

{2/TT, if UJX is convex,

| C P , X ^ I ^ ( ^ I ^ ) + ^2,n(^i,x)| , otherwise.

Dénote byP^fcGN, the set of all polynomials of degree at most k and set

Sh,D :={v e Sh : v = 0 on T^} C ifi(fî).

For A; G {0,1} and x e Afh we define 7r£*° : L 2 ^ ) -> Fk by

TT^ti 1= — ^ r f U (2.8)

and

with

1 f du

(2.10)
a0 :=—p—r / \u-y2ai

With the help of iri * and TT̂  we can define two quasi-interpolation operators Ph and Q/i of .ff^fi) into 5̂ ,1? by

and

^ AxTr^uCx). (2.12)

These operators are modifications of the quasi-interpolation operator of Clement (cf.' [7]). The standard nodal
interpolation operator is given by

Uhu := ^2 Xxu(x). (2.13)
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Proposition 2.1. For ail uEH^SÎ), allT €%, and all E e Sh we have

x€Af(T)

\\u-Phu\\2]E< £
xeAf(E)

with

cx, if x G Afh,n U J\fh,N
1/2 r N

+ X ƒ y ifxe N K D

{
1/2 r >,

(C^ + l } , if X G M,,D-

Proposition 2.2. For ail u e H2(Ü) n iîi(fi), allT eTh, and all E G £h we have

\\u-Qhu\\2;T<

c

(Q) _J{^ + «}{ n K 4 - x } {
CB;a: ~ W -.r 11/2f 1

^|2v^+^||n/c4,x} I ^ + Ka.ic ĵ if x £ Nh,D-
Remark 2.3. Estimâtes similar to those of Proposition 2.1 can be proven for Qh, too. The constants, however,
are greater than éj..]. and c-E/x.
Proposition 2.4. Assume that n € {2,3}. For ail u G H2(Ü) n H}j(ü), all T e%, and all E e 8(T) we /love

with

c(7) = 2 ( n + l)

,1/2
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TABLE l.

r ( P )
CT,x
c{P)

CE;x

C(Q)
CT:x
CE;x

c{1)cT

CE

0.637
2.316

0.710
7.075

3
20.486

Af{c)

JVh,N

0.637
2.316

0.710
7.075

3
20.486

JVh,D

1.456
4.631

2.558
12.301

3
20.486

3.452
6.297

20.825
90.949

3
20.486

jyh,D

5.678
12.593

44.582
158.142

3
20.486

Example 2.5. (1) Consider a uniform triangulation, ie . n — 2, consisting of isosceles, right-angled triangles
with short sides of length h. Then all triangles have equal area | / i 2 and

This yields the estimâtes

hx G {h,y/2h}, px e j ^ / ^

K\^x _ ^î ^2,x —ï v 2")

•^"1,2(^1,x) ^ "~j~) -^2,2(^l,x) ^

^1,T = V 2, ^2,T — 4,

and

C x <
' 0.637, if x e

3.452, ifxe

U U

Consequently, we obtain the following values for the constants of Propositions 2.1, 2.2, 2.4 (see Tab. 1).

(2) Consider a locally refined triangulation, Le. n = 2, consisting of isosceles, right-angled triangles. (At first
sight this condition seems to be very restrictive. When using appropriate refinement rules (cf. Sect. 4.1 in [11])
it, however, allows strongly refined meshes with very sharp refinement zones.) We first observe that, due to the
définitions of hx and px, the shortest edge of any triangle T, which has x as a vertex, is not smaller than pXy

and not larger than hx. Hence, we have for all such triangles

hT<V2hx, \p2
x<
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This implies that

Next, we look for a configuration which yields a K,IJX which is as large as possible. Elementary geometrical
considérations show that such a configuration is obtained as follows: Let T\ be a triangle such that x is on its
longest edge and such that this edge has length hx. Having constructed Tiyi > 1, we proceed in the counter-
clockwise sensé to T^+i by gluing it to the shortest edge of Ti which émanâtes from x such that this edge becomes
the longest edge of Ti+\. Each step of this procedure reduces the length of the longest edge by a factor \/2. If
x is a non-convex boundary node and if we admit sût domains, we thus obtain the maximal value KIJX = 16.
If x is a convex boundary node, we thus get the maximal value «;ljX = 4. Finally, if x is an interior node, the
triangles T\ and Tg need to match. We therefore obtain in this case the maximal value K\iX = 4. Summarizing,
the maximal values for interior and convex boundary nodes are

•^1,2(^1,x) ^ —ï ^2,2(^1,2) ^ 0.918;

for non-convex boundary nodes they are

* ( , ) ^ , K2t2(Kl9X) < 2.275.

Hence, we have

ƒ 0.637, if a; G Afh,a U J^% U A/J^,

^ \4.054, i f x G ^ U ^ .

The quantities K^T and /t2,T, on the other hand, are the same as in the first part. Consequently, we obtain the
following values for the constants of Propositions 2.1, 2.2, and 2.4 (see Tab. 2).

(3) Note that in both tables, the numbers for non-convex boundary vertices correspond to the worst case of
a vanishing exterior angle, i.e., of a slit domain. If a positive lower bound for the exterior angle is given,
the value of cp,x in (2.6) and, in the case of a non-uniform triangulation, the numbers KIJX, ...,K4JX diminish.
The quantities c^;x, -• are then reduced correspondingly. Both tables show that éléments sharing a non-convex
boundary vertex should preferably be of equal size and shape.

3. A TRACE THEOREM

Dénote by e*, 1 < i < n, the ith unit vector in W1 and by T the référence n-simplex with vertices ei,..., en

and en+i := 0. Set

Ei :={x G f : Xi = 0}, 1 < i < n,

En+i : - {xGT : |x|i = 1},

where |.|i dénotes the standard Zx-norm in W1.
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TABLE 2.

r (F )

CT;x
c{P)

JQ)
CT;x
JQ)
CE;x

CE

0.637
6.548

0.710
20.010

3
20.486

jyh,N

0.637
6.548

0.710
20.010

3
20.486

Af{c)

JVh,D

3.911
13.096

8.102
34.792

3
20.486

Kf(nc)

4.054
80.865

28.721
1357.906

3
20.486

JVhyD

44.486

161.728

530.329

2361.121

3
20.486

Lemma 3.1. For any v E HX(T) which vanishes on En+\ and any i € {1, ...,n} we have

Proof. Fix a n i £ {1, . . . , n} and a t i É H1^) which vanishes on En+i. Then we have for all x' Ç. Ei

dt.<[X-™X By + t

JO VXi

Integrating over Ei and invoking Fubini's theorem, this proves the assertion.

Lemma 3.2. For any T E Th, am/ E E £(T), any x E N{E), and any v E HX(T) we have

and

M2\

D

Proof. Dénote by F : T —> T an affine mapping which maps T onto T and en+i onto x. Then Z£ is the image of
some Ei, 1 < i < n, and XxoF — An+i where A„+i is the (n + l)-st barycentric coordinate of T. Set v :— voF.
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Since \n+iv vanishes on En+\ we may apply Lemma 3.1 and obtain

Since ^frAn+i = -e* and H V n ^ - f = 1 this yields

Transforming back to T we get

and

Hère, y dénotes the vertex of T, which is not a vertex of E, and |.|2 is the Euclidean norm in Mn. Since
/xn(T) = ~Ï and nn-\{Ei) = rn^xy this proves the first estimate of the lemma.

Since in the first estimate of the lemma hx may be replaced by HT -> the second estimate of the lemma follows
from the first one, the triangle inequality, and the identity

v =

4. SOME POINCARÉ INEQUALITIES

Consider an arbitrary vertex x £ J\fh and a k G {0,1}. We want to dérive explicit bounds on the quantity
Cp *x in the Poincaré inequality

h-^fe)w||2;^<4fc)xl|Vfe+1«||2^ \/ueHk+1(ux). (4.1)

Using the results of [9] this is an easy task when u)x is convex. For gênerai UJX, however, the situation is
much more complex. A major difficulty lies in the fact that u)x varies with the vertex x and that there is no
fixed référence configuration. One could overcome this difficulty by claiming that there is a small number of
référence configurations such that every u>x is affine equivalent to one of them. Then one could estimate c"px

for the référence configurations. This approach seems not satisfactory to us. Another possibility would be to
imbed every ux into a simple larger domain, e.g., a bail, and to construct suitable extension operators from UJX
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to the larger domain. Then one could estimate c~px for the larger domain. This is the approach of [5]. We
instead follow another strategy: in Lemma 4.1 we give an explicit estimate of the L2(o;x)-norm by the ü 1 ^ ) -
semi-norm and the L2(x + £?sx (px))-noTia. Thus, we only have to estimate c"px for balls and segments thereof.
This is a relatively easy task and is accomplished in Lemma 4.2.

Lemma 4.1. For all x G Mh ond all u E iï"1(o;x) we have

where the functions K\iU and ^2,n «re defined in équation (2.7).

Proof. Since the Lebesgue intégral is translation invariant, we may assume that the vertex x is the origin. Let
0 < p < px be arbitrary and set, for abbreviation, Bp := B^x(p). Obviously, we have

Prom équation (2.1) we conclude that

I I M Q / I 1i/

II II 2JCÜX \ B p f f I V

J£x Jp

+ u(pa)\2dsdS(a)ƒ ƒ n — l I / \ /
- I f S \U{SO~) — U{

Jnx Jp

; 2 f f X s^luisa) - u(pa)\2dsdS(<r) +2 f f'" sn-x\u{potfàsàS(o)
J^x Jp J^x Jp

(4.3)

Here, dS dénotes the (n — l)-dimensional surface element on Sn 1. Prom définition (2.2) of hx we get

S2 =2 f f. X a sn"l\u{pa)\2dsdS{a)
JT,X Jp

(4.4)

p
Tx{cr) . ox n - 1

()

On the öther hand, we conclude from Cauchy-Schwarz' inequality that

Si =2 / / X 5n-1|u(scr) - u(pa)\2dsdS(a)

2dsdS(a)f frxM il f8 d ,=2 / sn~1\ ƒ — u(rc
JnxJp UP dr

<2 f f * s n ~ 1 { / ^ ^ I ^ H I 2 * } ! / r-n+1dr}d5dS(«r)

<2 / / { / r""1!— uMpdrUs"-1 /
/s^yp LJp ör J l Jp
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An easy calculation and définition (2.2) of hx yield

/ Is r~1dr \ds = / {s\ns — slnp}ds

and, for n > 3,

J o v Jo =rMSi"2

, Va e Ex .

Since |^w(r(j)| < |Vw(rcr)|, we therefore obtain

with

2 r l o 1 n - 2

n - 2 In

Next, we estimate the boundary intégral in (4.4):

r i 9 1
2 2n

if n = 2,

, if n > 3.

_
( )

r71"1

Pn+1 J-z^Jo dr K ' Jo

+ n2 f r^uiratfdr f rn~h
Jo Jo

2 f ( pn+'
: J 4

n + 1 d r

705

(4.5)

(4.6)

(4.7)
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Here, we have used the Cauchy-Schwarz inequality and the estimate \-^u(ra)\ < \Vu(ro~)\. Combining esti-
mâtes (4.2-4.7) and recalling définition (2.7), we arrive at

H L <IM! + K{)hl\\VAl

Since O < p < px was arbitrary, this establishes the assertion. D

Lemma 4.1 enables us to détermine the quantity Cp x by computing the corresponding quantities for n-dimensional
balls and segments thereof.

L e m m a 4.2. For any x G Mh and any r G MÜj_ set

We then have for all r G M.+

cP,x(r) — rcpiX. (4-8)

Here, cpiX = cpjX(l) is given by équation (2.5). Moreover estimate (2.6) holds for cpiX.

Proof Let u G H1(BYtx) with JBs u = 0 and r G K _̂. Set

v(y) := u(r~1v), \/y G Sy (r).

An easy calculation yields

f v(y) =rn f u= 0,
JBSX (r) JBzn

IMl2;BE:c(r) =^ \\uh;B*x ,

Hence, we have

_

This proves that rcptX < cpiX(r). Interchanging the roles of u and v proves the opposite inequality and establishes
équation (4.8).
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In order to prove estimate (2.6) consider first an interior vertex x. Since in this case B^x is the unit bail, we
know from [9] that

p^ = infia:

where Jn/2 is the Bessel fonction of order n/2. Prom [1] we conclude that the first extremum of J\ lies in the
open interval (1*8, 1.9). This proves the first estimate of (2.6). The second one follows from [9].

Next, consider a boundary vertex x. If B%x is convex, Le. x e M^ N UAf^, the corresponding estimate of

(2.6) follows from [9]. Thus we remain with the non-convex case, Le. x G A/*^ ^^KD- Since Q has a Lipschitz
boundary, B^x satisfies an exterior cone-condition. Hence, there is an a G (0,7r) and a cône C with base 0 and
opening angle a such that C C Rn\B^x. Without loss of generality we may assume that the positive xi-axis is
the axis of symmetry of C. Then one easily checks that B^x is star-shaped w.r.t. — | e i and that

h:= max \y + -ei 2 = ~\ 5 + 4cos - \ - 2'
1 , 1

edB Z Z

where |.|2 is the Euclidean norm in M.n. Consider an arbitrary function u G i ï 1 (^s x ) with JB u = 0. Dénote
by B the bail with centre —\e\ and radius p and set ü := u • f̂ y JB u. Now we may apply relation (4.8) and
Lemma 4.1 with ACIJX, hx,px,Lüx, and B^ replaced by K := - , / i ,p, B^x, and B, resp. and obtain

Hère cp dénotes the Poincaré constant (2.5) for the unit bail. It is bounded by the first two estimâtes of (2.6).
Since u was arbitrary this proves that

CP,X <

This establishes the last three estimâtes of (2.6). For completeness we note that one can also use the results
of [4] to estimate cpiX for re-entrant corners, Le. ce G A/£^ UAf^^. The resulting upper bounds, however, tend
to infinity when the exterior angle aapproaches zero. D

Lemraas 4.1 and 4.2 enable us to détermine the quantity 2px of (4.1).

Lemma 4.3. For ail x G Mh and ail u G i J 1 ^ ) we have

where cx is given by équation (2.7)

Proof. As in the proof of Lemma 4.1 we may assume that the vertex x is the origin. If tux is convex, the resuit
follows from [9]. For the gênerai case set

i r
:— u -, ^7—TT- /

Vn\BvAPx)) JB

u :— u -, 7̂—TT- / u.
B ) )
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From Lemma 4.1 we obtain

Since JB , > ü = 0 , Lemma 4.2, on the other hand, yields

Since Vïï = Vu, this proves the assertion. •

Lemma 4.4. For all x 6 A/ft, and all u G H2(u>x) we have

\\u-KÏl)u\\2.^<clhl\\V2uhvx

and
\\V{u~^u)\\2^ < Cxhx\\V

2u\\2^
where cx is given by équation (2.7).

Proof. Since di(itx u) ~ TT4 (diu) holds for all 1 < i < n, the second estimate follows from Lemma 4.3. Set

v := u — Yli<i<n aixi- Then we have u — KXU = v — TTXV and V(w - Tri1^) = Vu. Hence, the first estimate
follows from the second one and from Lemma 4.3. D

Lemmas 4.3 and 4.4 in particular imply that

inf | |V^( U -p) | | 2 ; W x < c ™ - J ' + 1 C ~ J + 1 | | V m + 1 u | | 2 ; . x

VueHm+1(ujx),me{0,l},je{0,m}-

This estimate should be compared with the result of [8] which reads

inf

with

{2na/2 if m = 0, j = 0,
V8n if m = 1, j = 0,

if m = l, j = 1.

Here, the parameter p can be chosen in a maximal way such that ÜÜX contains a bail of radius p and is star-shaped
w.r.t. every point in that bail. If x is an interior vertex, we may choose p = px and obtain hx/p = K>IIX- If
n = 2 and x is a boundary vertex, an easy geometrical argument shows that

_ sin(a/2) hx _ 1 + sin(a/2)
P P a n d = "J = sin(a/2) "1>a;*

Here, a is the interior angle of ft at the vertex x. Note, that the resulting bound tends to infinity if a approaches
0 or 2TT.
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5. PROOF OF PROPOSITION 2.1

In order to reduce technical difficulties with the treatment of Dirichlet boundary conditions, we introducé a
modification Ph of Ph which ignores boundary conditions and which is given by

PhU=

Fix an arbitrary simplex T G Th and an arbitrary face E G £{T). Since X)XGJVÏT) Ax = 1 on T, we have

\\u~Phu\\2]T=\\ Y, M«-7r£°>tO||2ïT

From Lemma 4.3 on the other hand, we obtain for all x G Àf(T)

\\u - 40)w||2;T < \\u - 4 0 ) w| | 2 ; ^ < cxhx\\Vu\\2;üJx, (5.2)

IîAf(T) C\J\fh}D = 0) the functions PhU and PhU coincide on T. Hence, équations (5.1, 5.2) prove that Crp.x = cx

iï€Arh,n\JffhtN.
Next, we consider the case that J\f(T) PiAfh,D ¥" 0- We then have

\\PhU - Phu\\2;T =|| Yl X^X
O)U\\2.T

xeM{T)nUhD

I W l k < ? > |

Consider an x G J\f(T) nJ\fh,D- Choose a face Ex G £h,D such that x G J\f(Ex) and a simplex Tx G Th such that
Ex G S(Tx) and x G Af(Tx). Since w vanishes on Ex we have

\\Àx\\2;

Since

( 5-5 )

Lemma 3.2 applied to u — irx*u yields
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Combining estimâtes (5.3, 5.6) with inequalities (5.1, 5.2) we fînally arrive at

\\U - PhU\\2;T <\\U - PhU\\2]T + \\PhU -

Recalling définition (2.4), this proves the estimate for é^)x in the case Af(T) DAfh.D ¥" 0-
Next we consider the face E. Similarly to estimate (5.1) we have

\\u-Phu\\2lE< Yl \\*x(u-iri0)u)\\2;E. (5-7)

Lemma 3.2 applied to u — TTX u yields for all x G M {E)

\\Xx{u - T 4 ° ) U ) | | 2 ; B < { - ^ ^ } 1 / 2 { \ \ u - 7r(%||2 ;T + hx\\Vu\\2A • (5.8)

Since PhU and P^u coïncide on E if M (E) C\J\fh,D — 0, estimâtes (5.2, 5.7, 5.8) prove the estimate for é$)x in
this case.

Finally, assume that Af (E) f)Afh,D ^ 0- As in estimâtes (5.3-5.6) we obtain with the same notations

\\Phu - Phu\\2-E < Yl WXxhE\^M (5.9)

and

Combining estimâtes (5.2, 5.8-5.10) we arrive at

\\u-Phu\\2,E< Y: { i ^ }

Recalling définition (2.4), this complètes the proof of Proposition 2.1. D
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6. PROOF OF PROPOSITION 2.2

The proof of Proposition 2.2 is very similar to the one of Proposition 2.1. Again, we introducé a modification
Qh °f Qh which ignores boundary conditions and which is given by

Qhu=
xEAfh

Fix an arbitrary T eTh and an arbitrary E G £(T). Let x\ be any vertex of T. We then have

\\U - Qhu\\2;T < \\U - 7T^U\\2;T + HTT^U - Qhu\\2-T (6.1)

and

(6.2)
< Yl llAxIbirlki^-^^lloo;?.

X€JV(T)\{X1}

Let p G Pi be arbitrary and set

z:=(p( e i ) , . . . ,p(e n + 1 ) )eK"+ 1 .

We then have

IIPIIOOÏ? = \z\°°

and

||pl|2.f = {ztAz}1'2 > \min{A)X'2\z\2 > XnnniA^lzU

Hère, Amin(A) dénotes the minimal eigenvalue of A and the (n + 1) x (n + 1) matrix A has diagonal entries
2/(n + 2)! and non-diagonal entries l/(n + 2)!. Hence, l/(n + 2)! is an n-fold eigenvalue of A and n + 2/(n + 2)!
is a simple eigenvalue of A. Thus we have

Let p G Pi be arbitrary and consider an affine transformation F of T onto T. With p :— p o F we then have

lblloo;r = llplloo-f < V(^+2)ï||Pllaif = {(" + 2)!^||j}1/2 |b||2;T. (6.3)

Combining estimâtes (5.5, 6.3) we conclude that

(6.4)
jr + ||« - ^uh-r}-

Since x\ was an arbitrary vertex of T, inequalities (6.1, 6.2, 6.4) imply that

Wv-tPuh-.T. (6.5)
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From Lemma 4.4 on the other hand, we get for all x € J\f(T)

\\u - 4^U\\2-T < \\u - TT^uh^ < c2
xh

2
x\\V

2u\\2;uJx.

This proves the estimate for c^l in the case Af(T) nAfhiD = 0. Now, assume that Af(T) ̂ NH,D ¥" 0- W e t n e n

have

\\Qhu - Qhu\\2.T =|| Yl
x€Af(T)nAfhD

Retaining the notations of Section 5 and using estimate (6.3) with n>Ty and T replaced by n - l,Ex, and ü?i,
respectively, we conclude that for all x G J\f(T)

Lemma 3.2 to u — 7rx u and using Lemma 4.4 we get
Here, we have used that u vanishes on Ex. Let Tx € Th be such that Ex € £(TX) and x G J\f(Tx). Applying

4M2-.T. + hTx\\V(« - ^]u)h,T \

Combining estimâtes (6.5-6.9, 5.5), establishes the estimate for c^l in the case J\f(T) C\Nh,D ̂  0? t o ° -
Next, we consider the face E. Choose an arbitrary vertex x\ of E. Similarly, to estimâtes (6.1-6.4) we have

\\u - Qhu\\2,E < \\u - ^u\\2,E + Y, W^hEhi1^ ~ 41)U\UB (6.10)

and, for all x e Af(E)\{x!},

\\U -

Since X\ G M(E) was arbitrary, we obtain the following analogue of (6.5)

\\u-Qhu\\2,E<{V2+-\ Y] \\u - 7rWU||2;B. (6.12)
v Tb -f

Af(E)xeAf(E)
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Recalling définition (2.4) of ^4)X) estimâtes (6.9) and (6.12) establish the estimate for c^x in the case J\f(E) Pi

Finally, we consider the case that J\f(E) C\Nh,D ¥" $* We then have

\\QhU-Qhu\\2;E< J2 UÀ\2;E\41]^)\'
xeM(E)nAfhtD

The term |TTX U(X)\ is bounded in estimâtes (6.8) and (6.9). The term ||A -̂||2;JE? is given in equality (5.5).
Combining these estimâtes with those for \\u — Qhu\\2;E complètes the proof of Proposition 2.2. •

7. PROOF OF PROPOSITION 2.4

From Exercise 3.1.2 in [6] we know that for m G {0,1}

||vm(«-nfc«)||2îr<{

Since T has n + 1 vertices and since for all x G_Af(T)

||Ax||oo;T = 1 , IIVAXIIOOÎT < max
yeM(T)\ {x} \x-y\2

this estimate and Lemma 3.2 prove Proposition 2.4.
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