@article{M2AN_1999__33_3_517_0, author = {Benedetto, Dario and Caglioti, Emanuele and Libero, Roberto}, title = {Non-trapping sets and {Huygens} principle}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {517--530}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1713236}, zbl = {0935.35167}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_3_517_0/} }
TY - JOUR AU - Benedetto, Dario AU - Caglioti, Emanuele AU - Libero, Roberto TI - Non-trapping sets and Huygens principle JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 517 EP - 530 VL - 33 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_3_517_0/ LA - en ID - M2AN_1999__33_3_517_0 ER -
%0 Journal Article %A Benedetto, Dario %A Caglioti, Emanuele %A Libero, Roberto %T Non-trapping sets and Huygens principle %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 517-530 %V 33 %N 3 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_3_517_0/ %G en %F M2AN_1999__33_3_517_0
Benedetto, Dario; Caglioti, Emanuele; Libero, Roberto. Non-trapping sets and Huygens principle. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 517-530. http://www.numdam.org/item/M2AN_1999__33_3_517_0/
[1] Convex Surfaces, in Interscience Tracts in Pure and Applied Mathematics, No. 6, Interscience Publishers INC.,New York (1958). | MR | Zbl
,[2] Expansion of embedded curves with turning angle greater than -π. Invent. Math. 123 (1996) 415-429. | MR | Zbl
, and ,[3] Shape Analysis via Oriented Distance Functions J Funct. Anal. 123 (1994) 129-201. | MR | Zbl
and ,[4] Measure Theory and fine properties of functions. CRC Press (1992). | MR | Zbl
and ,[5] Minimal surfaces and functions of bounded variation, in Notes on Pure Mathematics, Birkhäuser, Boston (1984). | MR | Zbl
,[6] Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959) 345-355. | MR
,[7] Elements of the Topology of the Plane Sets of Points. Cambridge University Press (1951). | MR | Zbl
,[8] Integral Geometry and Geometric Probability, in Encyclopedia of Mathematics and its applications, Addison-Wesley Pub (1976). | MR | Zbl
,