@article{M2AN_1999__33_3_479_0, author = {Kangro, Urve and Nicolaides, Roy}, title = {Divergence boundary conditions for vector {Helmholtz} equations with divergence constraints}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {479--492}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1713234}, zbl = {0947.35048}, language = {en}, url = {http://www.numdam.org/item/M2AN_1999__33_3_479_0/} }
TY - JOUR AU - Kangro, Urve AU - Nicolaides, Roy TI - Divergence boundary conditions for vector Helmholtz equations with divergence constraints JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 479 EP - 492 VL - 33 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_3_479_0/ LA - en ID - M2AN_1999__33_3_479_0 ER -
%0 Journal Article %A Kangro, Urve %A Nicolaides, Roy %T Divergence boundary conditions for vector Helmholtz equations with divergence constraints %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 479-492 %V 33 %N 3 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_1999__33_3_479_0/ %G en %F M2AN_1999__33_3_479_0
Kangro, Urve; Nicolaides, Roy. Divergence boundary conditions for vector Helmholtz equations with divergence constraints. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 479-492. http://www.numdam.org/item/M2AN_1999__33_3_479_0/
[1] A Remark on the Regularity of Solutions of Maxwell's Equations on Lipschitz Domains. Math. Methods Appl. Sci. 12 (1990) 365-368. | MR | Zbl
,[2] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). | MR | Zbl
and ,[3] Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program (1985). | MR | Zbl
,[4] On the Solution of Time-harmonic Scattering Problems for Maxwell's Equations. SIAM J. Math. Anal 27 (1996) 1597-1630. | MR | Zbl
and ,[5] The Origin of Spurious Solutions in Computational Electromagnetics. J. Comput. Phys. 125 (1995) 104-123. | MR | Zbl
, and ,[6] On the Validity of Friedrichs' Inequalities. Math. Scand. 54 (1984), 17-26. | MR | Zbl
and ,[7] A New Point of View on the Mathematical Structure of Maxwell's Equations. IEEE Trans. Magn. 29 (1993) 1315-1320.
,[8] Compacité par Compensation. Ann. Scuola Norm. Sup.Pisa Cl. Sci. 5 (1978) 485-507. | Numdam | MR | Zbl
,