Divergence boundary conditions for vector Helmholtz equations with divergence constraints
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 479-492.
@article{M2AN_1999__33_3_479_0,
     author = {Kangro, Urve and Nicolaides, Roy},
     title = {Divergence boundary conditions for vector {Helmholtz} equations with divergence constraints},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {479--492},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {3},
     year = {1999},
     mrnumber = {1713234},
     zbl = {0947.35048},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_3_479_0/}
}
TY  - JOUR
AU  - Kangro, Urve
AU  - Nicolaides, Roy
TI  - Divergence boundary conditions for vector Helmholtz equations with divergence constraints
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 479
EP  - 492
VL  - 33
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_3_479_0/
LA  - en
ID  - M2AN_1999__33_3_479_0
ER  - 
%0 Journal Article
%A Kangro, Urve
%A Nicolaides, Roy
%T Divergence boundary conditions for vector Helmholtz equations with divergence constraints
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 479-492
%V 33
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_3_479_0/
%G en
%F M2AN_1999__33_3_479_0
Kangro, Urve; Nicolaides, Roy. Divergence boundary conditions for vector Helmholtz equations with divergence constraints. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 479-492. http://www.numdam.org/item/M2AN_1999__33_3_479_0/

[1] M. Costabel, A Remark on the Regularity of Solutions of Maxwell's Equations on Lipschitz Domains. Math. Methods Appl. Sci. 12 (1990) 365-368. | MR | Zbl

[2] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986). | MR | Zbl

[3] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program (1985). | MR | Zbl

[4] C. Hazard and M. Lenoir, On the Solution of Time-harmonic Scattering Problems for Maxwell's Equations. SIAM J. Math. Anal 27 (1996) 1597-1630. | MR | Zbl

[5] B.N. Jiang, J. Wu and L.A. Povinelli, The Origin of Spurious Solutions in Computational Electromagnetics. J. Comput. Phys. 125 (1995) 104-123. | MR | Zbl

[6] M. Křížek and P. Neittaanmäki, On the Validity of Friedrichs' Inequalities. Math. Scand. 54 (1984), 17-26. | MR | Zbl

[7] I.D. Mayergoyz, A New Point of View on the Mathematical Structure of Maxwell's Equations. IEEE Trans. Magn. 29 (1993) 1315-1320.

[8] F. Murat, Compacité par Compensation. Ann. Scuola Norm. Sup.Pisa Cl. Sci. 5 (1978) 485-507. | Numdam | MR | Zbl