A stability analysis for finite volume schemes applied to the Maxwell system
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 443-458.
@article{M2AN_1999__33_3_443_0,
     author = {Depeyre, Sophie},
     title = {A stability analysis for finite volume schemes applied to the {Maxwell} system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {443--458},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {3},
     year = {1999},
     mrnumber = {1713232},
     zbl = {0956.78019},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_3_443_0/}
}
TY  - JOUR
AU  - Depeyre, Sophie
TI  - A stability analysis for finite volume schemes applied to the Maxwell system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 443
EP  - 458
VL  - 33
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_3_443_0/
LA  - en
ID  - M2AN_1999__33_3_443_0
ER  - 
%0 Journal Article
%A Depeyre, Sophie
%T A stability analysis for finite volume schemes applied to the Maxwell system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 443-458
%V 33
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_3_443_0/
%G en
%F M2AN_1999__33_3_443_0
Depeyre, Sophie. A stability analysis for finite volume schemes applied to the Maxwell system. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 3, pp. 443-458. http://www.numdam.org/item/M2AN_1999__33_3_443_0/

[l] D.A. Anderson, J.C. Tannehill and R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Vol. 1. Hemisphere Publishing Corporation (1984). | MR | Zbl

[2] J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph. D. thesis, University of Nice - Sophia Antipolis, France (1995).

[3] S. Depeyre and D. Issautier, A new constrained formulation of the Maxwell System. RAIRO Modél. Math. Anal. Numér. 31 (1997) 327-357. | Numdam | MR | Zbl

[4] J.A. Désidéri, A. Goudjo and V. Selmin, Third-order numerical schemes for hyperbolic problems. INRIA Report No. 607 (1987).

[5] L. Fezoui, Résolution des équations d'Euler par un schéma de Van Leer en éléments finis, INRIA Report No. 358 (1985).

[6] N. Glinsky, Simulation numérique d'écoulements hypersoniques réactifs hors-équilibre chimique Ph. D. thesis, University of Nice - Sophia Antipolis, France (1990). | Zbl

[7] P.D. Lax, A. Harten and B. Van Leer, On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61. | MR | Zbl

[8] B. Van Leer, Flux vector splitting for the Euler equations. Lect. Notes Phys. 170 (1982) 405-512.

[9] A. Taflove and M.E. Brodwin, Numerical Solution of Steady-State Electromagnetism Scattering Problems Using the Time-Dependent Maxwell's Equations. IEEE Trans. Microwave Theory Tech. 23 (1975) 623-630.

[10] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1993) 302-307. | Zbl