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Modélisation Mathématique et Analyse Numérique

A STRONGLY NONLINEAR PROBLEM ARISING IN GLACIOLOGY

JACQUES COLINGE1 AND JACQUES RAPPAZ2

Abstract. The computation of glacier movements leads to a System of nonlinear partial differential
équations. The existence and uniqueness of a weak solution is established by using the calculus of
variations. A discretization by the finite element method is done. The solution of the discrete problem
is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and
its convergence numerically studied.

Résumé. La simulation des mouvements d'un glacier conduit à la résolution numérique d'un système
d'équations aux dérivées partielles fortement non-linéaire. Dans cet article nous prouvons l'existence
et l'unicité d'une solution faible de ce système en utilisant des éléments de calcul des variations. Après
avoir établi une discrétisation du problème par la méthode des éléments finis, nous montrons que
le problème discret a une solution unique qui converge vers la solution exacte. Nous proposons un
algorithme de résolution dont nous étudions numériquement la convergence.
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1. THE MODEL

In order to conduct theoretical studies, glaciologists often consider the so-called infinité parallel sided slab,
see [1]. This idealised glacier is made of an infinité ice mass situated between two parallel planes with a slight
inclination; ice is treated as an incompressible viscous fluid. In this paper we limit our study to the 2-dimensional
first order model (Blatter [1]) in a finite domain, i.e. a rectangle.

Let A = (0, L) x (0,1) 3 (x, z), L > 0, be the domain, the boundary of which is denoted by 9A. The System
of équations to solve in A is

d-g = -F(*,T)*, (2)

fil I

yz = 2F(„,T)T, (3)
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The variables have the following meaning: x and z are the Cartesian coordinates, u and w stand for the
horizontal and vertical velocities respect ively, r stands for the shear stress and a stands for the x-component
of the deviatoric stress tensor. The function F(cr,r) represents a flow law; it is related to the inverse of the
viscosity. We consider an often used law in glaciology, ie . Glen's flow law

(5)

where TQ ̂  0 is a real constant and n is a positive integer.
The boundary conditions are

u(x,z) = g(x,z), (x,z)er0, (6)
T(X,Z) = 0, (x,z)eTu (7)
w(a;,0) = 0. (8)

The boundary subset Fi contains the ice mass surface, ie . (0, L) x {1} c Fi, but it does not contain the left
and right sides, ie. {0} x [0,1] n Fx = 0 and {1} x [0,1] n T± = 0; we define Fo = dA \ Fi- The places where
the ice can move freely are represented by Fi. The function g is given; it represents the imposed velocity on
the left and right sides and at some places of the ice mass base.

2. ANALYSIS

Equation (2) for w can be left aside for the moment, because w can be computed when r and a are known.
We transform the équations in a more convenient form. We have F(a,r) > 0 and from équations (3) and (4)
we obtain

r =
1 du

2JF(<7,T)Ö?

1 du
a ~ F(a,r)d^T

With équation (1) we find

d_ f 1 du\ +2— ( 1 °
dz \2F{<T,T) dz) dx \F(O,T) dx/

After the coordinate transformation y = 2z, v(x^y) = u(xiy/2)} we have to solve the system

1 d f 1 dv\ d f 1 dv
2 dy \F(<T,T) dyj dx \F((T,T) dxj' K J

in the new domain O = (0, L) x (0,2). The boundary conditions are transformed in a straightforward manner
for obtaining v(x, y) = g(x, y/2), V(x, y) G F, | ^ = 0 on dû \ F, where F = {(x, 2z); (x, z) G Fo}.

If n = 1 then F(a, r) = 1 and the problem is equivalent to ~~Av = 1/2, with mixed Neumann-Dirichlet
boundary conditions. This is a well-posed linear problem with solution in VF1)2($1) = iJ1(f2). In the sequel we
suppose n > 2.
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We have the relation
re, — 1

^ ( ^ y • (13)

We show that F(<J,T) can be expressed as a fonction of |V^|2. We define ƒ = F(air) and s — \Vv\2 and have

f A -T2 - — • (14)

Lemma 1. For all s G M+ there exists a unique f e M+ satisfying (14), which we dénote by f = ƒ (s). Moreover
there exist two positive constants f3 and 7 (depending on n) such that

s1^ <f(s)<j((3 + s)^ , s > 0 . (15)

Proof. Let s be a non-négative number and set R(f) = ƒ "-1 — TQ and Ts(f) = -p. Clearly (14) is equivalent
to R(f) = Ts(f). If s = 0 we obtain ƒ = /(O) = ITQI71"1. Assume now that 5 is positive. The fonction R is
strictly increasing with R(0) — —T§ < 0 and lim/^oo R( f ) = +00. At the opposite, the fonction Ts is strictly
decreasing with Ta(+0) = +00 and limf^OQTs(f) = 0. By using Bolzano's Theorem, we easily conclude for the
existence and uniqueness of f(s).

Now we show the estimât e (15). By using (14) we have

By derivating (16) we obtain, since ƒ is strictly positive,

ƒ(«)

or equivalently

Relation (17) proves that ƒ'(s) is strictly positive (ƒ is strictly increasing) and with (16) we obtain linis^oo ƒ (s)
+00. Since ^ ^ > 2, it is easy to see from (16) that there exist two positive constants 7 and S such that

f (s) < 7 s ^ , Vs > S.

For 5 e [0, 5], the fonction f (s) is bounded and we set

It follows that

f (s) <

Finally, from (16) we obtain

and Lemma 1 is proved. D
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If we return to équation (12) we have, by using (13). the formai expression

Moreover if we define k(x, y) = g(x,y/2), V(x,y) € T, we obtain the following boundary conditions on v

v(x,y) = k{x,y), \/{x,y)eT, (19)

^(x,y) = 0, V(a:,y)ean\r. (20)

From now on, we assume that k belongs to W1~p'p(r), where p is defined by

In order to analyse Problems (18-20), we use the affine space

Vk = {ue W^p(n); U\T = k} .

The affine space V& is well defined because the fonctions belonging to W1)P(n) possess a trace on F which is in

W1~PIP(T) (see [8] for instance). In a similar way we dénote by Vo the linear space

V0 = {u€ W^itt); u\T = 0} .

Let p' be the conjugate integer of p, ^.e. - + -r = 1. Equation (21) immediately yields pf = n + 1. Now if
we take a fonction u in Wlip(£l), we easily verify, by using Lemma 1, that fn^a.\2\ [V^| belongs to Ln+1(fl).
Consequently^ HoLder's Jnequality allows us to write a weak formulation of Problems (18-20)^as followsi Find
v E Vfc such that

/ J / i r 7 ]9,S/vVwdxdy = - wdxdy, \/w € VQ. (22)
Jn /(IV^I2) 2 JQ

Let h(s) - j^y and H (a) - /0 ' h(t) dt Lemma 1 implies H (s) < ̂ s ^ and if u € W^(n), then H(\ Vu\2) e

). Therefore the following minimization problem possesses a meaning: Find v € 14 such that

J(v)<J(u), Vu€Vk, (23)

where J is deSned on 14 by

•/(«) = \ l (H(\Vu\2) - u) dxdy. (24)

We show below that the minimization problem (23) has a unique solution which is just the unique solution to
the variational problem (22). To aim at this we use the so-called direct methods from the calculus of variations,
see e.g. [6]. We dénote by

the integrand of (24); it takes its source in M x M2. We observe that <p(u,£) is continuous.
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Lemma 2. (p(u, •) is strictly convex.

Proof. We show that l(s) = H(s2), s > 0, is strictly convex. We have

l (s) = Isti [5 ) = , (AD)

/ / / ( s ) = 2f(s*)-4s*f'(s2)

We set t = s2 and from
n —1

/(t) = (T2 + -JL.) 2 (27)

we deduce

' /2w; v /m
Hence

(29)

and, since

f(t) = ̂  fc + ƒ 4 ) ^ -^r > o. (30)

we have ^"(5) > 0. Therefore we have established the strict convexity of Z(s).
The conclusion follows from the fact that l(s) is increasing for positive 5: let a € (0,1), £,77 € M2, then

I (K + (1 - a)r,\) < l{a\Ç\ + (1 - a)\t,\) < al(|f |) + (1 - a)ï(|i7|).

D

Theorera 1. There is a unique üGVfeC W l ïP(n) 5^c/i £&a£

J(u) = inf {J(u)i ueVk} < 00.

Moreover, v is the unique weak solution to (22).

Proof. We follow the approach presented in Dacorogna [6]. There exists k G WliP such that k\r = fe, see
Necas [8]. We clearly have j(k) < 00 and then

inf {J(u); u G V^} = m < oo. (31)

Let {wi/}yG^ be a minimizing séquence for (31). There exists an integer N such that, for ail v > iV, we have

m + 1 > J ( ^ ) = ƒ ( iJ ( |V^ | 2 ) - i O dxdy. (32)
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In the last part of the proof we introducé several constants, they are always positive but their values can change
from one équation to another. Lemma 1 yields

H(\Vw„\2) = / - _ dfl > ei (pa + \Vwu\
2) ^ - c3. (33)

Jo J\s)

We put (33) into (32) and obtain (p = ^ J 1 )

m + 1 > ei / (c2 + jV^i/l2) 2n dxdy — c% meas(Q) — / wudxdy
Jn Jn

> Ci I \Vw„\pdxdy — c$ — /

> CilJtü^H^n.p — c3 — / |iü^|
JQ

By using Young's inequality we find

ƒ ^ 1 dxdy = / 1 - |u>„| dxdy < / ( ——j ^ \wv\
p ) dxdy

Jn Jn Jn \P £p V )

= ^ meas (ft) + c5 ̂ | | ^ | | ? , P , Ve > 0, (34)

with - + -7 = 1. Clearly Hiüi/H p̂ < | |^i / | |^i l P and we have

m + 1 > ci | |^| |^1 ] P " es » = ^ s I K H ^ . (35)

By taking e small enough to have c\ — epc§ > 0 in (35), we prove that the séquence {w^}^^ isTDOundedT. We
can extract a subsequence, still noted {^i/}l/E^ï which has a weak limit D ê l 4 .

Lemma 1 easily yields

- | u | < tp{u,Q <{c + |u|)(1 + KI") , c > 0 . (36)

From Lemma 2 we deduce the convexity of <p(u, •) and, with (36), we can apply a theorem found in [7] (Thm.
1.1) to prove the weak lower semicontinuity of J . So we have

liminf J(wu) > J(v)
isÏOO

and it turns out that v is a minimum. Let us admit the existence of another minimum vf and define v — \(v+vf).
The functional J is convex because cp is convex; this yields

J(v) < l (J(v) + J(v')) = inf {J(«); ueVk} = m.

Hence v is also a solution to the minimization problem. It follows that J(v) = | {J(v) + J(v')) and

= 0. (37)
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If we suppose v and vf to be different, then we obtain a contradiction with (37) since the strict convexity of
H(uj •), see Lemma 2, implies

àxdy > 0.

It remains to prove that v is a weak solution to (22). A new application of Lemma 1 yields

where c > 0 is a constant. This bound allows us to apply a resuit found in [6] (Thm. 4.4, Sect. 3) to conclude.
D

We observe that the techniques used in the proof of Theorem 1 are not restricted to the rectangular domain
ft. In fact, they remain valid for any bounded open subset of M2 with Lipschitz boundary.

3. DlSCRETIZATION

We set discrete equivalent problems to Problem (22) and Problem (23) by using triangle finit e éléments of
degree 1. We dénote by % a regular triangulation of Q, with triangles K G Th and

Xh = {w G C°(O); W\K is a polynomial of degree at most 1, VK G Th} -

Moreover, we assume that for each triangle K G Th, K n Y is either void or a side of K or a vertex of K. If
rh : C°(Q) -> Xh is the interpolation operator and if we still dénote by k a continuous extension of k to Q,
we set

Vk,h = {w e Xh] w = rhk on T} ,

^ = {w e Xh] w = 0 on T} .

We have V/^, Vb,h C H1^) c W1)P(fî). Therefore the two following discrete problems are meaningful:
Variational discrete problem: Find Vh G Vk,h such that

/
Jn

/ wh dxdy, Mwh G VOth. (38)/ T7r=7^VvhVwhdxdy =
n J\\vVh\ ) *

Minimization discrete problem: Find Vh € V*,̂  such that

J{vh)<J(uh), VuheVkth. (39)

By repeating the proof of Theorem 1 almost unchanged we easily prove the following resuit:

Theorem 2. Problem (39) possesses a unique solution Vh € Vu,h which is als o the unique solution o f Problem
(38). ' D

In order to prove the convergence of the discrete solution to the exact solution as Th is refined, we need
several preliminary results.

Lemma 3. Let X be a Banach space and {xi}i^^ C X a séquence such that, for each subsequence {a^
extracted from {xi}iç.^, we can extract a new subsequence {x^ }ien which always weakly converges to the same
weak limit x G X. Then the original séquence {xi}ie-^ weakly converges to x. D
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L e m m a 4 . For fyg€ LP(Q) the inequality below holds

f I \f\p - \g\p\ dxdy < p\\\f\ + igWll^Wf - sllz*.

Proof. L e t x, y G M. B y t h e M e a n V a l u e T h e o r e m t h e r e e x i s t s ( € i s u c h t h a t

- x\.

By taking the absolute value of this expression and bounding |£| by \x\ + \y\ we find

l|y|p " | * N < P(\x\ + \y\r~l \\y\ - |x | | < p(\x\ + \y\)*i

Now considering the intégral we obtain

/ | | / r - \9\v\ dzdy < v f (l/l + |S|)P=1 | / - g\ dxdy.
Jn Jn

The harmonie conjugateofp is q = ̂  and f,g G LP(Ü) implies that \f-g\ € LP(Q) and (\f\ + \g\)p~l € Lq(Ü),
We apply Hölder's Inequality and obtain

P ' - g \ U

D

Lemma 5. The functional J is continuons in WliP(fl).

Proof. The linear part of J is clearly continuous; we consider the nonlinear part only. By using the définition
of H and Lemma 1, we obtain for s, t > 0:

\H(s)-H{t)\ = h(r)

l — n

r 2n

dr

dr < 2

p

' i
f(r)

« 5 -

dr

Consequently, we obtain for u, v G W1'P(Q):

f H(\Vu\2) - H(\Vv\2) dxdy < - f \ \Vu\p - \Vv\p\ dxdy.
Jn P Jn

Lemma 4 allows us to conclude. D

Theorem 3. Let {7h}h£(o,i} be a séquence ofrefining regular triangulations. Then the séquence of corresponding
discrete solutions {vh}he(o,i} C W1'p(ft) weakly converges to the exact solution v G W1^^) as h tends to 0.
Moreover, {vh}he(o,i} strongly converges to v in LP(ÇÏ).

Proof. We prove lim^^o f/i ~ v by applying Lemma 3. So we consider an arbitrary subsequence {f^KeN of
{vh}he(Q,ï\i w ^k nm*-^oo h% = 0. For each %% we define Wht, the element of Vfc^, which satisfies

I|V-IÜ/IJ|WI.P =min{\\v -w\\wi>P\ w G Vk,h} *
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Now we show that the séquence {wh^ieN is a minimizing séquence for J. We know from Lemma 5 that J
is continuous. It is then possible for each e > 0 to find ö > 0 such that, for each v G B(v,Ô), we have
\J(v) — J{o)\ < s. It is known that jj-y — w^Ww1^ tends to 0 as hi tends to 0. Henee we have established that
the séquence {wh^ien is a minimizing séquence.

The discrete solutions {vh^ieN satisfy J ( i ^ ) < J{whi)-) VÏ E N. Therefore {vh^ien is &lso a minimizing
séquence. From the proof of Theorem 1 we know that we can extract a subsequence from {f/^lieN which weakly
converges to the exact solution v. Lemma 3 let us conclude for the weak convergence in W1'p(ft). The compact
embedding of W1)P(Ü) in LP(Q,) implies that the séquence {vh}he(oti] converges to v strongly. D

4. NUMERICAL EXPERIMENT

In this section we present a simple numerical algorithm to compute an approximation of the solution of
Problem (22). In fact, this algorithm computes an approximation of the solution of the discrete problem (38).
The above theory would rather suggest to design a minimization algorithm for the equivalent problem (39).
Nevertheless, an algorithm for Problem (38) is certainly easier to design. Therefore in this preliminary numerical
investigation we prefer solving the discrete variational problem (38).

Algorithm 1. For solving Problem (38) apply the following steps

a) Choose an initial guess v^ for the numerical approximation.

b) For i — 0,1, 2 , . . . solve the following linear problem: find u^ G Vkth satisfying

/ T^—S/v^^Vwhdxdy = - /
Jn /(|Vt;^;|2) z Jn

wh dxdy,

Before considering the numerical convergence, we present a typical solution to Problems (1-4, 6, 7). We select
an example with a small central région at the base {z = 0) where we prescribe a Neumann boundary condition;
a homogeneous Dirichlet condition is prescribed elsewhere at the base. We take n = 3, i.e. p = 4/3. The
numerical solution is plotted in Figure 1.

We do not provide any theoretical analysis for the convergence of Algorithm 1; we only report observed
numerical convergence. A possible numerical experiment consists of applying Algorithm 1 to a modified problem
to which we know the exact solution. We do this by a priori choosing a function v G W1^ (fi), with f^(x, 2) = 0,
and then inserting it in the left-hand side of (18). This defines a new right-hand side and consequently a new
problem (with adapted boundary conditions and possibly domain). Access to the exact error is then possible
for this new problem. It turns out that the convergence rate is very sensitive to the choice of v.

Hence, in order to obtain an approximation of the convergence rate for the original problem, we use a séquence
of refining grids. The exact problem we consider is : Problem (22) with T0

2 = 0.1, L = 8, ((0, L) x {0}) n Ti =

(3.6,4.4), &(z,0) = 0, fc(0,y) = g(L,y) = -±y4 + \yz - ^ J V + (T0
2 + l)y. (This particular choice for k

has a special meaning in glaciology we do not want to explain here.) We estimate the convergence rate by two
different means. First, we consider the numerical solution computed on the finest grid as the exact solution and
estimate the convergence on much rougher grids. We find:

• Linear convergence for i>, i.e.

Sublinear convergence for ^ or more precisely

M d v dvh„
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horizontal velocity vertical velocity

10 20 30 40 50

FIGURE 1. Slab with sliding : u, wt r and o.

Sublinear convergence for 1^ or more precisely

C t'i»™=o( ' fU>
A second method which allows us to estimât e the convergence rate is the following: we observe that, for any
three successive grids (4h, 2h and h) in the refining grid séquence, we have

(40)

We have established convergence of the séquence of discrete solutions, see Theorem 3. Therefore, for a chosen
e > 0, there exists ho G (0,1] such that

By applying the triangle inequality, when h > hOi we find:
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The observation (40) allows us to write this last inequality as

(41)

By using (40) once more and (41) we find

= £+X7—r\\vok-ih -VofcJI 4 , _ , fc€N.

Since e is arbitrarily small, we have linear convergence for v.
The same argument can be repeated for the derivatives of v because we observe

dv2h M _ fi1 M dv2hII fi1
11 dx dx "^(n) ~ ll dx dx"L*W
II dvjh dv2h H - -,„ M ÔV2h 9vh
11 dy dy "£*(«) " dy dy llLÎ(ny

for any h in the refining séquence. We find ||g* - § * | | L | ( n ) = O (h07) and | | g - ^ | | i i ( n ) = O (/i08). This

confirms what we already found.
If we estimate the convergence rate for the original variables r and <r, instead of the derivatives of v, we find

an almost linear convergence in LP(A).
A last aspect we would like to report is the convergence of Algorithm 1 in terms of approximating the

exact solution of the discrete problem (38). We observe a linear convergence. At each itération the différence
Wvh ~vh Iloo is divided by about 1.75. This number seems not to be problem dependent. We also have that,
for a given problem, the number of itérations does not change as the grid is refined.

Finally, the convergence rates reported above only change a little if we take different values for n (we tested
n — 1,2,3,4, 5), and overrelaxation reduces the number of itérations by about 30% for n — 3.

5. CONCLUSIONS AND FUTURE WORK

We have proved the existence and uniqueness of the solution to a nonlinear problem coming from the field
of glaciology. We have also proved that the discrete solution converges to the exact solution. A first simple
numerical scheme has been presented and tested with reasonable performances. The grid size for the proposed
algorithm can be made much finer than what was possible with the previously used techniques in glaciology
(see [1,2,4,5]).

Several aspects of the work presented in this paper may certainly be improved or completed. A mixed
formulation of the discrete problem or finite volume methods should provide more précision in the approximation
of V^j which is of prime importance to the glaciologist. The convergence rate of Algorithm 1 is only linear and
an improvement would be désirable. From a theoretical point of view, a convergence theory for the numerical
algorithm and a posteriori error estimâtes (adaptative grid refinement) are two aspects we would like to develop
in order to complete this work.

The authors would like to thank Henri-Michel Maire for Lemma 4.
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