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ON THE LINEAR FORCE-FREE FIELDS IN BOUNDED AND UNBOUNDED
THREE-DIMENSIONAL DOMAINS

TAHAR-ZAMÈNE BOULMEZAOUD1, YVON MADAY 2 AND TAHAR A M A R I 3

Abstract. Linear Force-free (or Beltrami) fields are three-components divergence-free fields solutions
of the équation curlB = aB, where a is a real number. Such fields appear in many branches of
physics like astrophysics, fiuid mechanics, electromagnetics and plasma physics. In this paper, we deal
wit h some related boundary value problems in multiply-connected bounded domains, in half-cylindrical
domains and in exterior domains.

Resumé. Les champs de Beltrami (ou sans-force) linéaires sont des champs tri-dimensionnels à di-
vergence nulle et vérifiant l'équation rotB = aB où a est une constante réelle connue ou inconnue.
Ces champs apparaissent dans plusieurs domaines de la physique tels que la mécanique des fluides, la
physique des plasmas, l'astrophysique et l'électromagnétisme. Dans ce papier, nous présentons quelques
nouveaux résultats concernant des problèmes aux limites associés dans des domaines tri-dimensionnels
bornés (simplement ou multiplement connexes) et non-bornés (cylindre semi-infini et extérieur d'un
domaine). Ces résultats concernent essentiellement Pexistence, l'unicité, la régularité et les propriétés
d'énergie des solutions.
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INTRODUCTION

A three-components field fonction B is called Beltrami (or force-free) if B is solution of the system

c u r l B x B = 0, (1)

divB = 0. (2)

Such fields play a prominent rôle in solar physics (see, e.g., [5,42]), in plasma physics (see [27,45]), in fluid
mechanics -they are solutions to Euler's équation (see [7,15,19,38,49]), in superconducting materials (see [24])

Keywords and phrases. Beltrami flows, Force-free fields, curl operator, hydromagnetics, stars: corona, magnetic fields.
1 Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France,
e-mail: boulmeza@ann.jussieu.fr
2 Laboratoire ASCI-CNRS, Bâtiment 506, Université Paris Sud, 91405 Orsay, Cedex, France.
3 (CNRS) DSM/DAPNIA Service d'Astrophysique, C-E Saclay, 91191 Gif sur Yvette Cedex, France.

© EDP Sciences, SMAI 1999



360 T.-Z. BOULMEZAOUD ET AL.

and in electromagnetic waves theory. The basic équation (1) is often replacée! by:

curlB = a(x)B, (3)

where B as well as the scalar function a(x) are unknown. Two situations are commonly distinguished: a
constant everywhere and a a variable function. In the first case, équation (3) reduces to a linear équation called
also the TYkalian équation. The case a = 0 corresponds to the well known potential field theory.

Recently, linear Beltrami fields have been investigated by many authors; see, e.#., [9,10,14,15,30-33,35,36,
38,39,41], Note that they are also subject of a very intensive research in astrophysics and especially in solar
physics (see [42], reviews by [5] or [43] and références therein).

In this paper, we shall present some new results about existence and uniqueness of 3-D Beltrami fields in
a bounded domain, in half-cylinder and in an exterior domain. The sequel of this paper is divided into three
separated and independent parts:

• SECTION 1. We present a new and a gênerai theorem concerning the existence, uniqueness and regularity
of linear force-free fields subject to appropriate boundary conditions in a bounded région. The proof of
this theorem is mainly based on Predholm alternative and spectral theory. A similar problem with a given
helicity-like data instead of a, which is unknown, is also studied. Note that in this last situation, our
approach is different from the minimization one presented by [33].

• SECTION 2. We deal with linear force-free fields in a semi-infinite cylindrical domain fix]0,+oo[. A
diagonalization method is used for deriving an explicit formula of the gênerai solution.

• SECTION 3. We discuss the existence or not of linear force-free fields in exterior domains using a new
approach based on weighted Sobolev spaces.

1. LINEAR BELTRAMI FIELDS IN A BOUNDED DOMAIN

1.1. Preliminaries
Let Cl be a bounded open set of M3 with boundary F. We make the following assumptions on il: ft is

bounded, connected but eventually multiply-connected and its boundary F is of class C2. Let Fo be the exterior
boundary of Q, and Fi,..,, Tp the other components of F.

We assume that there exists m manifolds of dimension 2, Ei,..., Em , such that HQ = ü\U^LxT,i is smooth and
simply-connected and Si n Ej = 0 if i ^ j (m describes the connectedness of H, and Si,..., Sm are regular cuts
linking (ri)i<i<p). We set m = 0 when £1 is simply-connected.

In the sequel we shall dénote by (.,.) both the scalar product in L2(ft) and in L2(^)3. The duality product
between H~i(Fi) and H^(Ti) will be denoted by {., . ) r , .
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Define the following spaces:

V = {v G L2(ft)3,divv G L2(ft), curlv G L2(îî)3, v.n = 0 on T},
U = {v G L2(Q)3,divv G L2(O),curlv G L2(ft)3,v x n = 0 on T},

equipped with the norm:

IMI = (||v||gin + | |divv| |^ + Hcurl v | |2
î f i) i (4)

We need the following resuit due to [23] (see also [22,26]):

Lemma 1. The spaces U and V are Hubert spaces. Moreover, one has the following identities topologically and
algebraically:

V = {veJî1(î])3,v.n = 0onr})

U = {v€H1(n)3,vxn = O onT}.

Now, define the spaces:

H = {v G V, divv = 0, curlv = 0},
G = {v G U, divv = 0, curlv = 0}.

One has also the following resuit (see [18]):

Lemma 2. The space H (resp. G) has afinite dimension m (resp. p) and there exists a base (qi)i=i)...,m (resp,
(fx)i=i,...,pj such that:

ƒ qi.nda = ôitj i, j = l , . . . , m ,

7'

Thus, we dénote by P # (resp. P G ) the orthogonal projection from V on H (resp. from U on G) with respect
to inner product associated with the norm (4). The two next lemmas will be useful throughout this section
(see [18]):

Lemma 3. For any vector field v in L2(Q)3 verifying

divv = 0,

we have
• If v G V then

IfveU then

= VV / v.ndcr)qi.
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Lemma 4. The mapping v —> llv||v = (lidivv!lon + licurlvllofi + ll-^Hvllon)5 (resp. the mapping v —>

\\v\\u = ()|divv[|o,n + llcurlvllo,a + IIPGVIIO.ÎÎ)1 ) ^ a norm on V (resp. on U) equivalent to the norm (4).

In the remaining of this paper, we shall dénote by ao(fi) and ai (O) the constants defined by:

ao(«) - inf PP^-, (6)
UV ' vGV.v^O ||vHo.fi V }

i n f

ao(Si) and ai(fl) are positive and not equal to zero because of Lemma 4. An estimate of these constants will
be given in Lemma 12.

1.2. Statement of the problem when o: is known

In this section, we assume a to be a given real number not equal to zero (the case a = 0 corresponds to the
classical potential theory). We propose to study the following boundary value problem:

curlB = aB in Q,
divB = 0 in O,

B.n = g onT, (8)

/ (B x nj.q^Gtcr = ot&ii i = 1, ...,T?T.,
^ JT

where (ai,a2, ...,am) G IRm and g G H^(T) are given. Note that g must verify the compatibility condition

gda = 0, for 0 < i < p. (9)
r,

In fact, let B G Hl(fl)3 solution of (8). For 0 < i < p, let KI be a function of X>(M3) satisfying Ki(r) — öij in a
neighborhood of Tj. One has

curl («iB) = aKi~B + V ^ x B.

Thus a / B.nda = /curl (^B).n = /divcurl (^B)dQ = 0.

Note that the boundary condition

aai = / (B x nj.q^da = I cu r lB .q^^ = a I B-q̂ tZH,
JT Jn Jn

means that the orthogonal projection of B on H is given.

1.3. A gênerai existence and uniqueness resuit

In this section, we deal with the problems of existence, uniqueness and regularity of solutions to (8). The
approach we propose in a first time is based on the use of Fredholm alternative. It is divided into several steps.

1.3.1. An equivalent problem

For any g G H*(T) verifying (9) and (ai,...,am) E Mm, define a potential field Bo G ü^ f i ) 3 by Bo =
o ~ X^Üi ai*li> where (po G H2(ft)/R is solution of the Neumann problem:

g onr. (10)
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Observe that Bo vérifies

curlBo = Ö, divBo = 0, Bon — g on F, and / Bo^q^^O = — ai for i = 1, ...,m.

Jn

In the sequel, we define the energy EQ>Qhy

m

Eo = ||Bo||g,n = g E ?

Now, B G Hl(n)* is solution of (8) if and only if b - B - B o G fl^fi)3 is solution of

(12)

curlb = ab 4-a;Bo in Q,
divb = 0 in îî,

b.n = 0 on T,

The équivalence between this System and the original problem (8) is obvious. In fact, let B e Jff
1(O)3 be

solution of (8). Then, it is clear that b = B — Bo belongs to V and vérifies the first three équations of (12). In
addition,

aai = /(B xn)xud<r = - / curlB.qidfi = - / a(b 4- B0).cndQ = - û ( P H b , q») + aca.
Jv Jn Jn

Hence Pjfb = 0. Conversely, if b is solution of (12), then the same calculus asserts that B is solution of (8).

Now, in order to give a new formulation of (12), let us introducé the space

X = {vG L2(O)3, div v = 0 and <v.n, l ) r . = 0 , 1 < i < p}. (13)

X is a closed subspace of iJ(div ;î]) = {vÇ L2(f2)3, divv G L2(£l)}. Hence, it is a Hubert space equipped with
the norm of L2(Ü)3.

As a first step of our investigation, we consider the curl-div system:
Given J G l ; Find u G V such that:

curlu=j, divu = 0, P#u = 0. (14)

Lemma 5. u G V is solution o f (14) if and only if u is solution o f the variational problem:

(curlu,curlv) + (divu,divv) + (P#U,PH-V) = (j,curlv), Vv G V. (15)

In addition, this problem admits ont and only one solution u £ V, and there exists a constant C(fl) such that:

n. (16)

Proof. First, it is quite obvious that if u is solution of (14), then it is also solution of the variational problem (15).
The converse is slightly more complicated; let u be solution of (15). On one hand, taking v = P # u in (15),

one obtains P#u = 0. On the other hand, let $ be solution of the Neumann problem:

= div u in Çl, —— = 0 on F.
an



364 T -Z BOULMEZAOUD ET AL

This problem admits a unique solution in if1(îl)/IR since (divu, 1) = 0 by Green's formula. Now, taking
v = V$ in (15) one yields divu = 0 (almost everywhere).

It remains to prove that curlu = j . We set w = curlu — j . Then divw = 0 and (15) implies:

curlw = 0, (w x n, v)r = 0 , Vv G V.

Thus w belongs to G. In addition, (w.n, l)r\ = (curlu.n, l)r, — (j, l)r t ~ 0- Hence P Q W = 0 and therefore
w = 0.
The existence and uniqueness of solution are a direct conséquence of Lax-Milgram's theorem and the Lemma 4.

D
This existence lemma allows us to introducé a bounded linear operator

K : j e l ^ u e l solution of (14).

Moreover, one can observe that K is a product of a linear continuous operator j G X t-> u G V solution of (14)
and the imbedding V^^X which is obviously compact since the imbedding H1(Q)<->L2(ft) is compact. Thus,
we have the lemma

Lemma 6. K is a compact operator.

Now> we can rewrite the system (12) int o the form

Fmd b G X such that: b - aKb = aKB0 . (17)

In order to use the Predholm alternative, let us introducé the Adjoint problem.

1.3.2. The Adjoint problem

The following lemma will be useful here (see [18]):

Lemma 7. Let u be a given field of L2(H)3 such that

div u = 0 and I u.nda = 0, i = 1,..., m,

Then} given d = (di, ...,dp) G M.p} there exists a unique vector potential $ G H1^)3 that satzsfies:

curl<I> = u, div3> = 0, $ x n = 0 on F and / §da = du i = 1, ...,p. (18)/ §da = du i = 1, ...,p.

In particular, this lemma implies that any vector field j in X admits a unique Weyl-Helmoltz décomposition
into the form (see [16,20,23]):

m

j = Vs + V^ c%ç\z + curl 3>, (19)

ds
where s G H1^) is solution of the Neumann problem As = 0, — — j .n on F. The numbers ei, ...,cm are

on
given by

The vector field $ belongs to i71(fi)3 and vérifies

div $ = 0, 3>xn = 0, / Q.nda = 0, 1 < i < p.
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$ exists by virtue of Lemma 7. Furthermore, it is characterized by the variational problem:

Lemma 8. For any j G X, the vector $ m the décomposition (19) is the unique solution m U of the variational
problem:

(curl^,curlv) + (div#,divv) + ( P G * , P G V ) = (j,curlv), Vv G U. (20)

The proof of this lemma is similar to that of Lemma 5.

Now, consider the operator
r : j € l ^ $ G l solution of (20) .

Lemma 9. K* is the adjoint operator of K.

Proof Let u and v be two éléments of X. v can be decomposed into the form

m

v = Vs + ̂ 2 c*q» + curl (JPv).

Hence p m

u.vdQ= ƒ KuiVs + y^^^+cuv
JQ ^r{

But, one has
/ Ku.Vs = - / div (Kn)s + / s(Ku).n = 0,

JQ Jn Jv

j Ku.^dQ, = (PHKU, qt) = 0, for % = 1, . . . ,p.
Jn

Thus
f Ku.vdÜ = [ Ku.curl (K*v)da = [ curl(Ku).K*vdo- = / u.üTvdcr.

Therefore î T* is the adjoint operator of K, •
The homogeneous adjoint équation can be written into the form

Fmd (p m X such that: (I - aK*)cp = 0. (21)

In other words, Fmd tp G X, s € Hl(Çt)/R, (*yu ...,7m) G ̂ m
? swcft that

Vs + > 7zq2 + -curlcp = <p, <p x n = O on F. (22)

Remark 1. One can also prove that ip is solution of the homogeneous adjoint problem if and only if ip G X
and

curl curl cp — acurl ip — 0, ip x n = 0 on F. (23)

In fact, (22) means that i^*(curl<p — aip) = 0, say, by lemma 8, div <p = 0 and

(curl <p — aip, curl v) = 0, Vv G U

which is equivalent to (23).
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1.3.3. Fredholm alternative

Since K is compact, its adjoint operator K* is also compact. In addition, according to classical Riesz-
Fredholm theory, the direct and the adjoint homogeneous problems admit two finite dimensional spaces of
solutions with the same dimension n. The following lemma display the relationship between their solutions:

Lemma 10. Let <p G X be solution of the homogeneous adjoint problem

<p-aK*<p = 0. (24)

Then curl (p is solution to the direct homogeneous problem

£ » OLK£ = 0. (25)

Conversely, if £ is solution of (25), then there exists a unique (p in X, solution of (24) and such that curly? = £.

Proof Let (/)bea solution of (24). Applying the curl operator to (22), one gets

curl (curl cp} = acurl <p.

In addition, curl (p is divergence-free and vérifies

curl ip.n = 0 on F and / curl cp.nda = 0.

Hence curl <p is solution of the direct homogeneous équation.
Coiiveisely, let ç be solution of (25). We set <p — K*£ G X. Since divç = 0 and P w £ = 0, then | = curl tp

and (p vérifies (23). •
Now, observe that the homogeneous problem admits a non trivial solution if and only if l / a belongs to <r{K),

the spectrum of K. Since K is compact, cr(K) contains 0 and a(K)/{0} is an empty, a finite or a countable set
of eigenvalues contained in [—||i£"||, ||i<"||]. TO settle this question, we use the following resuit due to [48]:

Lemma 11. The operator S, defined in the Hubert Space

Xi = {v e X, v.n = 0 on I\P#v = 0},

by Su = curlu, for u G D(S) — {u G XL, curlu G XL} , is self-adjoint and its spectrum a(S) consists of
countable séquence of eigenvalues.

Since every eigenfunction of K belongs to D(S) and is an eigenfunction of 5, with an inverse eigenvalue, and
conversely, we conclude that

a{K) = {0} U {-, n € a(S)} e [-\\K\\, \\K\\]. (26)

Now, applying the Fredholm alternative to the inhomogeneous problem (17) yields:

• If l/a <£ cr(K), then the inhomogeneous problem admits one and only one solution (the direct and the
adjoint homogeneous problems don't admit any non-trivial solution).
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1/a G <r(K), then the adjoint homogeneous problem (22) admits a finite dimensional space of non-trivial
solutions. The inhomogeneous problem (17) is solvable if and only if the right hand side vérifies

/ KB0.y = 0, (27)
Jn

for any \£ solution of (22). If this solvability condition is fulfilled, then (17) has a gênerai solution of the
form

b = b + curl1^,

where b is a particular solution and ^ is a solution of the homogeneous adjoint problem (22) (since by
Lemma 10, curl1^ is solution of homogeneous problem (25)).

Now, let us rewrite the solvability condition (27) differently. Let (\£,s,7 = (71, ...,7m)) D e solution of
(22). Then

1

a
1 ^ m

= - (B 0 , cur l — + Vs +
a a

If m f
= - ( / sB0.nda + y " 7 i ƒ B0.qic£Q),a Jr ~[ Jn

a

Hence, we can rewrite the solvability condition (27) into the form

f v^

Finally, we summarize our investigation in the following gênerai existence and uniqueness resuit:

Theorem 1. There exists a countable séquence of real values {oti^i G N} ; verifying

• the séquence ( a ^ 1 ) ^ converges to zero,

and such that:

(i) If a g {ai,i G N} (in particular if \a\ < a o j , then the problem (8) admits one and only one solution
B G H1^)3 for any g G H*(T) verifying (9) and (au..., am) in Rm.

(ii) If a = ai for some zGN, then the adjoint homogeneous problem (22) admits a finite dimensional
space o f solutions, and the problem (8) is solvable if and only if the data g and (ai,..., am) verify the condition:

(28)

for any (^?,s,7 = (71,.-,7m)) solution of (22). If this solvability condition is fulfilled, then (8) has a gênerai
solution of the form

B = B

where B is a particular solution and ^ is a solution of the homogeneous adjoint problem (22).
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Remark 2. In Theorem 1, the estimate |az| > ao is in fact deduced from the next lemma which gives some
inequalities relating \\K\\, ao, a^ Ai and À2 are the first and the second eigenvalues of the Laplace operator
associated with the homogeneous Dirichlet and Neumann boundary conditions respectively (see Appendix):

Lemma 12. We have:
(i) The following inequahties hold

ao(fi) < mi{!q,\\K\\-1), (29)

ox(ïï) < inf^.Hifir1) . (30)

(ii) /ƒ F is connectée then

(iii) If, m addition Cl is simply-connected then

ao = inf(Aj,||ür||-1). (32)

(iv) If£l is star-shaped, then

aid(fi) > 1, (33)

where d(Q) = s u p x y € a [x — y| is the diameter ofH.

1.4. Regularity of solutions

Corollary 1. Assume F io be of class Cm + 1 '1 and g e Hm+i (T) for some m > 0 Let B solution of (8). Thev
2

B e H™*1^). Moreover, B - Bo G i7

This corollary sterns from the following lemma (see for instance [22]) combined with the basic équation curl B =
aB (by induction):

Lemma 13. Assume F to be of class C m + l j l . Then

= {v e L2(^)

1.5. A variational formulation and energy estimate

When \a\ < ao, the problem (12) admits a variational formulation which brings all the équations of this
problem together.

Proposition 1. If \a\ < oto(ÇL), then B is solution of (8) if and only ifh = B —Bo is solution of the variational
problem

(curl b — ab, curl v) + (div b, div v) -h (P#b, P^v) = (aBo, curl v). (34)

Moreover, this problem admits one and only one solution B G Hl(£ï)3, and we have the energy estimate

Eo < \\B\\la < YI^ÏE° (35)

a
where EQ IS defined by (11) and r ~
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Proof. First, it is obvious that (12) implies (34). Conversely, let b a solution of (34). Then, one can prove
exactly as in the proof of Lemma 5 that Pifb — 0 and divb = 0. It remains to prove that curlb — ab = aBo-
We use the following lemma (see, e.g., [25], p. 47):

Lemma 14. Let w G L2(Çl)3 such that

div w — 0 and (w.n, l)r t = 0 , 1 < i < p.

Then, there exists A € ü/"1(Q)3 such that

curl A = w, div A = 0, A.n — 0.

The identity curlb — ab — aB 0 = 0 is deduced by taking v = b — a A GV in (34), where A is in Jff
1(Q)3 and

satisfies curl A = b — Bo, div A = 0, A.n = 0.
The existence and uniqueness of solution of the variational problem are a direct conséquence of the Lax-Milgram's

theorem since the left hand side in (34) is a bilinear for m a(.,.) which vérifies |a(v, v)| > (1 )||vl| %••> Vv G V.

Note that the energy estimate (35) is slightly more accurate than the one obtained direct ly from the variational
formulation and the ellipticity of a. In f act, to prove it, one remarks that

(curlb,b) = a||b||gin,

since (B0,b) = 0 . Thus

*2\\Vo\\ln = «curlb - abf0)Q = ||curlb||Ofn - a2||b||giO > («g - a2)l|b||§,n.

a2

Hence ||b||o Q < —^ ^-^o- (35) is then deduced by observing that
a0 ~ a

| | - D | | 2 _ I I K I I 2 _ L I I " D I I 2

D

Remark 3. If a is a not a constant function, then the variational problem (34) is not in gênerai equivalent to
the problem (12). In fact, following exactly the same steps of the proof above (see [12]), one can show that if b
is solution of (12) with a(x) a variable function, then b is divergence-free and there exists a function p E Hçj(Q)
such that

curlb = a(x)(B + Bo) H- Vp.
Thus, applying the divergence operator to this équation yields

Ap = div (aB) = Va.B.

Hence, if a is constant p is necessary equal to zero.

1.6. A vector potential formulation

Another variational formulation based on the use of vector potential is possible. The vector potential can be
introduced using Lemma 7.

Thus, given d = (di,...,dp) G IRP, one can introducé <& £ U such that curl<3> = b, where b is solution
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of (12). The next lemma characterizes <3> as the unique solution of a variational problem:

Proposition 2. If \a\ < a^} then b is solution of (12) if and only if <£ is solution of the variational problem:

v
(curl $, curl v - a v ) + (div $, div v) + (PG$, PGv) = a(B0, v) + ^ d;( A, PGv).

Proof First, if b is solution of (12) then it is obvious that $ is solution of (36). Conversely, the Lemma 4
ensures us that the bilinear form ai(.,.) defined by:

ai (u, v) = (curl u, curl v — av) + (div u, div v) + (P^u, P^v),

is continuous and U-elliptic since |a| < a i . Hence, by virtue of Lax-Milgram's theorem, (36) admits a unique
solution which is necessarily the vector potential of the unique solution of (12). D

1.7. Example. ft is a sphère

Here we consider the particular case where O, is the unit sphère. In this simple geometry, following [14], we
shall see that it is possible to give an explicit expression of the solution of the interior boundary value problem.

First, set x = (x, y, z) and introducé the toroidal-poloidal décomposition (see [34])

B = curl (Tx) 4- curl curl (Px), (36)

where T and P are two unknown functions. One can verify easily that if T and P are solutions of

= 0 inQ, (37)
- - g on 5,

then B is linear force-free. S is the surface of the unit sphère ü and As is the Laplace-Beltrami operator on 5
defined by:

1 d2u 1 Ô ( ndu\
+ i 0 38

sin 0 dtp2

In the sequel, we shall dénote (., .)s the scalar product L2(S) and by YJm, l > 0 and —l<m<l, the spherical
harmonies on S. They constitute an orthonormal basis of L2(S) and an orthogonal basis of H1^). Recall that

where P£
m is the Legendre function of order m and degree l. For any l > 0, — l < m < i, Y™ vérifies

+ i(i + i)yz
m = o. (39)

In addition, for any distribution u € T>(S)y we set u™ = (u^Y^s- u G Hs(Vt) where s is a real number if and
only if:

1=0 m=-l
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+00 +Z

In this case, uf1 = YJ V~̂  u^Y™. Now, we décompose g G H~^(S) on this basis:

371

+00 l

g(ö^) = E E gr̂ m>
1 = 1 m=-l

with g p = (g.Y^s- Note that gf = ( - l ) m g" m , for any Z and m, and g° = <g,yo°)s = 0 since (g, l)s = 0.
We thus use a décomposition on spherical harmonies and deduce easily that P\S G Hi{S) can be written in

the form

,<P) = E E ( 4 0 )

ï = l m= — l

where C is a constant. After what P is obtained in the interior of the sphère by solving the Helmoltz's équation
with a Dirichlet boundary condition (see, e.#., [40])

+ 0 0 1

-TT E fcr
1=1 H ' + ' m=-l

The functions ki, for i > 0, are defined by:

[ if ji(a) = 0 and gf1 = 0 Vm G {-*,...,

where (jz)z>o are the usual spherical Bessel functions defined by:

l '

(42)

. . . ,, / l d j
Note that, in accordance with Theorem 1, if ji(a) — 0, then the condition g^ = 0 Vm e {—Z,..., +Z} is necessary
and the constants C™ are in this case arbitrary.

Finally, B is given by

where b]71 is defined by

<4 3 )

D



372 T.-Z. BOULMEZAOUD ET AL.

1.8. Two problems with a unknown.

In the sections before we dealt with the existence of a linear force-free field submitted to appropriate boundary
conditions when the constant a is known. However, physical situations in which a is unknown are quite possible.
A common example is that of a closed System for confining a plasma by a magnetic field. In such a System,
if the plasma is perfectly conducting, the magnetic field is subject to a topological constraint. To express this
constraint, consider a vector potential A corresponding to B and set

i?(B) = (A,B). (44)

This quantity, called the helicity, is physically meaningful and jauge invariant when B vérifies the conditions:

B.n = 0 on I\ (45)

and (if the domain is multiply-connected)

LB.nda = 0, for i = 1,..., m. (46)

On one hand, the helicity describes the linkage of lines of force of B with one another (see [8,37]). On the other
hand, it is an invariant of any perfect MHD motion of the plasma (see [50]; see also [46,47]).
When one of the two conditions (45) and (46) is not satisfied, the helicity, as defined by (44), loses its jauge
invariance. In that case, Berger and Field [8] (see also [29]) introduced the notion of relative helicity defined as
follows:

Hr(B) = (A,B) - (Ao,curlAo), (47)

where A is vector potential of B and AQ is solution of the system:

curl curl Ao — 0, div Ao = 0, Ao x n = A x n on F. (48)

It is worth noting that the quantity Hr(B) is jauge invariant and generalizes the concept of helicity since
Hr(B) = jff(B) when B vérifies (45) and (46).
Another possible data which can be given instead of a is the intégral

LB.curlBdO. (49)
n

This quantity lacks a clear physieal meaning. However, when B is force-free, TUQ looks like the helicity since
a~lB is a vector potential of B.
Our aim here is to treat the two following boundary value problems in which a is unknown and g is given in
Hi(F) and vérifies (9):

Problem A. Find a e M and B G H1^)3 such that:

curlB = aB in D,
divB = 0 inîî,

B.n = 0 on F, (50)
' * n ? I J S t = = ~^i') 2 = 1 , . . . , 7 7 1 ,

Hr(B) = HQ (prescribed helicity),



ON THE LINEAR FORCE-FREE FIELDS IN BOUNDED AND UNBOUNDED THREE-DIMENSIONAL DOMAINS 373

where Ho, ai, 0,2,..., am are given real numbers.

Problem B. Fmd a E M and B e H1 (ft)3 such that:

curlB = ctB in fi,
divB = 0 in fi,

B.n = g on T, (51)
(B x n, qz) r = ota%, 1 = 1,. . . , m ,
(curlB,B) = mo,

where m0 is a given real number, (ai, a^ ..., am) G Mm.

In both the problems, we still dénote by Bo the potential field corresponding to the data and Eo its energy
defined as in Section 1.3. We have the following results:

Theorem 2. Assume that Ho ^ 0 and JE70 ̂  0. Then, the problem (50) admits at least one solution (a,B) G
R x if1 (fi)3. This solution satisfies the estimâtes

\a\ < ra0 (52)

El < ||B||g in < fxEo, (53)

/ = VÎT*, r = ^ — - mt/i <î = a ° | 5 • In addition, if fi î 5 Cm+1 '2 an^ g e i /m +2 (r), then B G

Hm+1(n).

Proof. Let us first introducé the vector potential ao € H1^)3 defined as the unique solution of:

curlao = Bo, diva0 = 0, ao.n = 0 on r ,Pnao = 0-

Note that ao is also solution of the variational problem:

(curlao, curlz;) + (divao,divv) + (Pi/a0, Pjyv) = (B0 ,curlv), Vv G V,

and thus vérifies the estimate:

4||o||g,n (55)
o

Now, we set b = B - Bo and we define a G H1^)3 by:

curla = b, diva = 0, a x n = O o n r , P G a = 0. (56)

With A = a 4- ao and Ao = ao, one proves easily that the relative helicity Hr(B) can be rewritten as follows:

J ï r (B)= /a .bdfi + 2 fa.BodQ. (57)
Jn Jn

Furthermore, if B = b + Bo vérifies curlB = aB, then

f \h\2dQ = [ curlb.adfi = a f a.(b + B0)dfi.
JQ, Jn Jn
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Thus, since (a, Bo) = (a, curlao) = (curla, ao) = (b,ao), we get

f \h\2dQ = aHr(B) - a [ ao.
Jn Jn

We consider now the following subspace of iï"(div ; Q):

Y = ) v € L2(Q)3; d ivv = 0, v.n = 0 on F; / v.q, = 0, i = l , . . . , m i ,

the bail

and the mapping L : j E B —> u € B where u is the unique solution of:

curl u == a(j -f Bo), div u = 0, u.n = 0, Pj?u = 0,

with

|2

a =
Ho- ao-j.jdîî

This mapping is well defined since

— / &.Q.jdÇï
Jn

>

a0

Thus, a is well defined, |a| < rctQ and

ao||u||o,n < ||curlu||0,n < |^|(||j[|0,n

(58)

(59)

Furthermore, T is clearly continuous and compact. Indeed, let j n be a séquence in B. The corresponding
séquences a^ and (u^n^) are also bounded in R and in Hl(fi)3. By compacity of the inclusion iJ1(fi)3c-^L2(fi)3,
a subsequence, still denotéd (u^n^), converging in L2(£2)3, can be extracted. The proof is achieved by applying
Schauder's fixed point theorem.
The proof of regularity remains the same as in Corollary 1. D

Theorem 3. /ƒ the data g; a = (ai,..., am) and m® verify the condition

- - K l tl, (60)

(61)

then the problem (51) admits one and only one solution (a, B) G M x H"1 (il)3. Moreover, a and'B verify:

2T . lal _ „„„o . ^ r. : ~,EQ
1 + y/l + 4r2

 OLQ

In addition, if Çï is Cm+1>1 and g e J ï m + 2( r ) ; then B e
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Proof. We consider the following séquence:

= Bo

For n > 1, : BQ + b^ n + 1 \ where b(n+1) is solution of the curl-div System:

'cur lb ( n + 1 ) = a ( n ) B ( n ) ,

b(n+i)_n = 0

P H b ( n + 1 > = 0.

(62)

is well defined, sinceThis séquence

For n > 0, define v("+1) = B<n+1) - B^) G V. Hence

K l
o ( } '

||curlv<n+1>||§in =

o.n

Thus by (6):

(63)

By using the condition (60), it follows that (B^)n£N is a Cauchy séquence in Hl(Q)3 and converges to B,
solution of (51). Let E = ||B||o,n- Then, E vérifies

E2 <
1 - r 2 u

where r = — = Hence, x2 — x — r2 < 0, where x = —^ r = • Thus x is between the two
o o

roots of the polynomial X2 — X — r2 and this implies (61).
It remains to prove uniqueness. Let (ai,Bi), (0:2,62) be two solutions to (51). Then doing exactly the

same calculus as above, where B^ and B^n+1) are replaced by Bx and B2 , one obtains the following inequality
analogous to (63).

HB2-B1||^< iü^l | |B 2 - (64)
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Since - ^ 4 < 1? then B2 - Bi = 0. D

Remark 4. Toroidal geometry. The case in which il is a tor us plays a prominent role in plasma plasma
confining experiments. The toroidal pinch experiments are the best illustrations of such a situation (see [46,47]
and références therein). It is worth noting that the torus is a multiply-connected domain with m = 1; only
one eut Si sufïices to make it simply-connected. The flux throughout Si is nothing but the classical well
known "toroidal flux". Theorems 1 and 2 and Proposition 1 give a complete palette of results about existence,
uniqueness, regularity and à priori estimâtes which can be very useful in plasma confinement.

Remark 5. Eigenfields of Maxwell operator and Beltrami fields. The purpose of this remark is to show a simple
manner of deriving linear force-free fields from the Maxwell spectrum; let A the Maxwell operator defined by:

V(A) = {(E,H) G L2(Ü)6, curlE and curlH e L2{ü)s,
divE = divH = 0, E x n = 0, H.n = 0 on T}.

It is well-known that the operator iA admits a discrete set of real eigenvalues with finite multiplicity. Let w be
an eigenvalue of %A and let (E, H) E L2(Q)6 be the corresponding eigenvector. One has:

c u r l H = iuj'Ei, c u r l E = - i w H , d ivH = divE = 0, H.n = 0 and E x n = 0.

Then one can observe that for any complex number /x, B i = Re[fi(E — zH)] and B 2 = Re[(j,(E + zH)] verify:

c u r l B i =ct;Bi, cur lBg — —u;B2.

Hence, B i and B^ are linear Beltrami fields in Q.

2. LINEAR BELTRAMI FIELDS IN A HALF-CYLINDER

In modelling natural phenomena physicists are often led to deal with unbounded régions of space. In the
context of force-free field, the studies of solar atmosphère supply se ver al nice examples of this situation. For
example, in reconstructing the coronal magnetic field, the région above a small part of the solar photosphère
is often likened to a half-space [2,5] since the curvature of the sun's surface can be neglected. Furthermore,
some recent models for coronal heating are developed in a semi-infinite cylindrical part of space (see [3] for a
study of existence and stability of axisymmetrical linear force-free fields). Our aim here is to solve explicitly
the problem of existence of linear force-free fields in a semi-infinite cylinder with a gênerai section (and without
any assumption on the axisymmetry of the data or the solution).

Let Û be a bounded connected domain of M2 with boundary F of class C1'1 (or assume Ù a convex polygon).
Let V be the half-cylinder of IR3 defined by V — Ï7x]0, +oo[. For any field v = (^);=i,2,3, we set vh = {v 1,̂ 2)
the horizontal part of v. We dénote also by V^ , divh , curlh and A^ the horizontal gradient, divergence, curl
and Laplace operators with respect to coordinates (x,y).

Define as usual the Sobolev space HQ(Û) by:

H^(Ù) = {u£ tf1^); u = 0 on T},

which is a Hubert space for the norm
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thanks to Poincaré's inequality on f2. Introducé also the subspaces of L2(Q)2:

i ï (curlh, Ù) = {u e L2(Û)2; curlhu G £2(Ô)},

H(divh , Ü) = {u G L2(Ü)2; divh u e L2{Ü)},

and set
H = H(dïvh , fi) n i/(curlh, fi),

H is a Hubert space for the norm

\\U\\H = (I|U||OJÔ + ||divhu||0)n

Finally, for any Banach space X, define the functional space

L2(0,+oo,X) = < v :]0,+oo[—> X\ v is measurable and /

+ 0 0

(67)

< +00 L ,

equipped with the norm:

2.1. Statement of the problem

Given a real number ay we want to find a bounded three-dimensional field B satisfying curlB = aB in the
half-cylinder T> with a given vertical component Bz on Ù at z — 0.

First, we introducé the following closed subspace of H x HQ (fl):

Va = {v G jff x flo(n); cur lhVh = OLVZ}.

It is worth noting that the équation curlhVh = otvz is nothing but the z-component of the Beltrami équation.
Now, given a scalar function g = g(x,y) G HQ(Ù), we seek B satisfying:

B € L2(0, +00, Va),ptxB € L2(0, +oo, L2(îî)3),
dzBx = dxBz + aBy in P ,
ö z 5 y = öyJBz - a £ x in P,
5ZS2 = -dxBx - dyBy in £>,

B2 = g at z = 0.

(68)
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This System is a non standard évolution problem, in which the vertical coordinate z plays the same rôle as time,
and the boundary condition on Û corresponds to initial conditions. Note that the "initial condition" at z — 0
is only on Bz. Note also that the fourth équation and the description of behavior at z = +00 are included in
the définition of the space in which the solution is required to be.

Our purpose in the next section is to prove that the boundary-value problem (68) has one and only one
solution.

2.2. Existence and uniqueness of solution

In this section, we shall extensively use the spectrum of —Â  in fï. It is well known that this operator admits
an infinité countable set of eigenfunctions {UJ}^^... ,+00 € HQ(Ù) with a séquence {\j}j=i,2t... ,+oo of strictly
positive eigenvalues conventionally ordered such that

0 < Ai < A2 < A3 < .. - < +00.

Moreover the family {uj}j=ii2J.., ,+00 can be chosen to form an orthonormal basis of L2(Ù) and an orthogonal
basis of H$ (Ô). SO, one has for any i, k > 1:

(uuuk) = <5i;fe, (69)

(VfttJi, VftCJfc) = \kài,k- (70)

Theorem 4. If a2 < \\, then for any g G HQ(Ù)} the problem (68) admits a unique solution. Moreover, this
solution can be written in the form

(71)

where Pk are defined by:

0k

bfc

(72)

(73)

Proof Uniqueness
Let Bi, B2 6 L2(0,+oo, VQ) be two solutions of problem (68). Their différence B = Bi — B2 satisfies the

same problem with an homogeneous boundary condition Bz(z = 0) = 0. Multiplying the two first équations of
(68) by Vh Bz and integrating by parts over Û yield the identity

-1 J 2 QD
J- tt H -r-i M 9 ii U-£-*Z 119 . 11 T—t T-i 119 9 11 i-i 119

Then, using the Poincaré's inequality gives
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On the other hand, we have

\\Bz(z = 0)\\0Q = 0 and I \\BZ\\^ ^dz < -\-oo.

Thus, | |SZ | |OÏQ = 0 on ]0, +oo[.

If we multiply now the System (68) by (BXiBy, —Bz), then we get

Therefore, ||BX||2 ft = \\By\\
2

0Ù = 0 on ]0,+oo[ since B h G L2(0,+oo,L2(0)2). Hence, B = 0.
Existence

We proceed in several steps:
Step L Construction of the Galerkin Basis
We consider the following special eigenvalue problem: find the eigenvalues j3 and the eigenfunctions (u3 ,v3^w3) G
Va such that:

r 9WJ _

dy J

du3 dv3

dx dy

The two first équations can be arranged in the form

-au3 = (74)

9u;7

Then, using the identity
du.

one obtains the équation
~Ahw3 =(7j + a 2 H ,

which means that w3 is an eigenfunction of — A^ and T2 + a2 is the corresponding eigenvalue. Therefore, for

every eigenfuction u^, there are two possible values of r)3\
 /y3iC = e/3j where e € {—1, 1} and /33 = WÀ̂  — a2.

Then, we have:

Remark 6. Taking into account (69) and (70), one can deduce the relations:

= 0,

(75)

(76)
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for any integers i and k.

Step 2. Approximated solutions and convergence
The function g e HQ(Û) can be expanded on the basis o;*:

+00 +00

g = ̂ ( g , ^ ) ^ with

We look for a solution B of (68) into the form

H-oo +00

B =

where the vector fields bï)€ are defined by bi)€ = ( U Ï . C V ) ^ ) -
Formally7 if we substitute in (68), we deduce that the coefficients Cit€ are solutions to

f ^ ftci)£ = 0, 6 = 1 , -1 ,
dz

(

Therefore,
ci>i(z) = (g,o;i)e

since we search a bounded solution at infinity. Hence,

+00

(78)
1 = 1

where we write b2 instead of bZjl (for clearness). It remains to prove that the field B, givcn by the sum (78), is
eoned and is the solution of the problem (68):
(i) Setting

Y/,i)e-*'bi, (79)

one gets for any z > 0

m-\-p

| | d i v h B h j m + p - d i v h B h i m | | ^ = ^ )9?(g,Wi)2e-2ft*, • (81)

| | c u r l h B h | m + p - c u r l h B h | m | | ^ = a2 }_^ (g,^)2e"2 A", (82)
i=m+l

m+p

Bz,m+p — Bz,m\1Q
 = 2_^ ^ ( g , ^ ) 6 %z. (83)

i=m+l

Therefore for any z > 0, (Bm)m>i is a Cauchy séquence in Va. Hence, the series (78) converges for every z > 0
and B is well defined. Furthermore, it is clear that B G £2(0, +00, Va).
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(ii) Now, we show that Sz(., z = 0) = g in H$(Ù).
First, given T > 0,

= sup(
[°>T] fc

m+p

Hence, £* G C°([0,T], ff^(fi)) and Bz(.,2: = 0) is defined. Moreover

+oo m +oo

k=\ fe=l fe=m+l

for any integer m. Using (77) , one can deduce that

Thus, Bz(z = 0) = g in H£(Ü).

(iii) FinaUy, —- 6 L2(0,+oo,L2(Ô)3) since
uz

and B is a classical solution for (68).
•

Remark 7. Energy estimate.
The energy of the solution

f 2
JOJ :=: ƒ X J (Zul.

Ja '
can be easily computed if one uses the orthogonality relation:

(bfc, bj)x,2(n) = 2öktj, for any j,k > 1. (84)

In f act ,
"* O: (3j OL

Vwfc H Vcjfc x e^, —Vcj j -l
Afc Aj Aj

+ a2

Thus,

(85)
fe = l
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Remark 8. Let us clarify some points about the necessity of the condition a2 < X±, involved in theorem 4 for
existence of solution; let B be a solution of the problem (68). Multiplying by Bz the équation curlhBh = aBZ}

taken at z = 0, and intégrât ing over Û, one gets

dx

Thus

U | < ï ^ Ï _ .

Combining the two first équations of (68) leads to

fdBz dB
dy

dBzUsing the identity —— = —divh Bh and integrating over Ù gives
O Z

l|Bh(* - 0)||0)ö = \\B.{z = 0)||0>a = ||g||Oiô,

and finally (86) becomes

a\
llg|lo,n

A necessary condition for the existence of solutions to (68) for any g G HQ(P) is that a2 < XL.
— Note that for a partieular g ̂ ven in ff^{Û) tfee-boundary value probleinr{68) stiü has arsolutien4f ot2 <^Am)

where m is the smallest integer such that (g, u;m) 7̂  0.

Remark 9. The Dirichlet condition Bz = 0 included implicitly in the définition of Va can be replaced by the

Neumann condition = 0 on F x (z > 0} (the dérivâtive — = 0 is of course with respect to the normal of
on on

F). In this case, one must replace (ujj)j>i and (Xj)j>i by the eigenfunctions and the eigenvalues of — A^ with
Neumann boundary condition.

2.3. Approx ima t ion and er ror e s t ima te

Let a a given real number such that \a\ < y/Xl and g G HQ{Û). Let B be the unique solution of (68) and
consider its approximation B m defined by:

m

Bm = Y/(9^i)e'l3'zbi. (87)

Dénote by gm the approximation of g defined by

m

^2i)ui. (88)
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We have the

Theorem 5. There exists two constants aD and C(Ù) such that for any integer m, the following inequalities
yield

|B-B Oift < (89)

(90)

Proof. Let m be an integer. From (80)-(83) it stems

||B-BTO | |Oif t < e

| | B - B m | | H <

Then, using the 2-D Weyl formula

4TT

meas(Çl)
—n, wnen n —> +oo
Çl)

Dweget (89) and (90).

Remark 10. Bi-periodic Beltrami fields
A treatment of Beltrami fields bi-periodic with periods Li {% = 1 or 2) in each horizontal direction e^ and

ey can also be done (for periodicity in the three directions the reader can see [15]). Bi-periodic Beltrami fields
may be useful for modelling some physical problems such as Prominences on Sun's surface (see [17]). Let us use
the Fourier expansion

eîk-x, (91)

where x = (x, y, z) and k = ( ——, ——, 0 1, n, m G N. Given ce a real number not equal to zero, we look for
\ Li L2 J

B such that curlB = aB.
First, for any real vector k = (&i, fo, 0) such that k — |k| ^ 0, we introducé the vectors:

k
) e3(k) = ez.

The following properties are easily verified:

ei(k)ëi(k) = «<J for i,j e {1,2,3},
ik x ei(k) = 0, ik x e2(k) = fee3(k), ik x e3(k) = fee2(k).

Thus, (ei(/e),e2(/c),e3(fc)) is a basis of M3 and for k ^ 0 one can décompose h^(z) on this basis:

bk(z) = Tk(*)ei(k) + Mk(^)e2(k) + Ak(z)e3(k).

The introduction of this décomposition is useful hère since the équation curl B = aB becomes:

(92)

(93)

(94)

kfik(z) = Xk(z), fcTft(z) = X'k(z),

KW + ("2 - k2)Xk(z) - 0,
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One gets after solving this system:

= b01e
ia* ( ] ) + b 0 2 e - i a z ( \ ) , (95)

i fa 2-fe 2>0,
if o» - fc2 < 0,

where /?& = \ / l a 2 — k2\, &01, &02j ^k,o &nd Àk,i are complex constants chosen such that B is a real vector. They
can be fixed using for example a boundary condition on Bz at z = 0 and a behaviour condition at infinity
(lim^—^+oo |B[ = 0 for example).

3. LINEAR BELTRAMI FIELDS IN EXTERIOR DOMAINS

In this last part, our investigation concerns the existence of Beltrami fields in exterior domains. The behavior
at infinity is described by setting the problem in a weighted Sobolev space. We show that the Beltrami équation
curlB = aB, with a given normal component, admits an infinity of solutions in this space, and by the way we
show also that nor one of those solutions is finite energy, as proved by [44] otherwise. Finally, we prove that
the addition of a well chosen boundary condition allows one to get well posedness of the problem.

Let £le be the exterior of the unit sphère of M3, r = |x| = (x2 + y2 + z2)î the distance to its center and
5 = {x € IR3; |x| = 1} its surface. For any real number fc, define the space Wfe(Qe) as:

= | « e Î>'(ÎT); J G L\œ), ~ G L2(fie

which is a Hubert space for the norm

H l {II l l i + \ \ \

Observe that in the neighborhood of S = <9f£e, the functions of Wk(£le) have the same regularity as those of
the classical Sobolev space H1. Therefore, the trace on dfte can be defined like in H1 and the usual trace
theorem holds. As in a bounded domain, let a be a real number not equal to zero and consider the problem:
find B G Wfc(ne) (7c will be spedfied) such that

curlB = a B in ^ e ,
divB = 0 infie, (97)
B.er = g at |x| = 1,

where g is a given function. If we dénote by i?r, B^ and Bo the components of B in spherical coordinates, then
rBr vérifies the Helmoltz équation

A(rBr) + a2rBr =0 . (98)

In fact, this équation can be obtained by applying the operator x.curl to the équation curlB = aB\

x.curlcurlB = x.curl (aB) = a2x.B.
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Then, we get (98) using divB = 0 and the identity:

x.curlcurlB = -x.AB -hX.V(divB) = -A(x.B) - 2divB t- x.V(divB).

Now, a décomposition of rBr on the spherical harmonies leads to:

385

1=0 m=-l

where /i™(r) are solutions of the spherical Bessel équation:

The function /i™(r) can be written into the form

where h\ is the spherical Hankel function given by:

(100)

*•«=<-"'(;!)'(?)•
are two families of complex numbers such that:while (A[77')/>1>|m|<^ (/^fl);>i,|

(i) Xt = (—l)m/iz~
m, for any l > 0 and m G {—Z,..., 1} (to guarantee real value radial component ü?r),

(ii) AJ"fe|(a) + lifhi{a) = gP for any l > 0 and m G {0,..., 1} (boundary condition at |x| = 1),

where g,m = (g,^m) . Observe that if gj" / 0 and hi(a) = 0 then the équation
does not admit any solution (Aĵ /xj?1). Thus, we shall assume that:

g p = 0, Vm G {-/,..., 1} if ftz(a) = 0.

(a) + PTh?\a) =

(102)

Under this assumption, there exists an infinity of solutions {)tfl)llT)i>i,\™>\<i verifying (i) and (ii). Let us fix
one among them. Then, B<p and Be are solutions of the following differential system;

\
dr \ rBe

0 -a,
a 0

rBv

rBg

dBr

sinö dip
dBr

~~d9~

(103)

This System is obtained by projection of the basic équation curlB = aB on ev and e$. Its homogeneous
solution is given by

bh,e =
cos(

)
T

sin(ar)
) ^ L

sin(

- ip! {6, (

r
cos(ar)
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A particular solution is

- g£
Hence, one deduces that (B$} B^) are on the form

Observe now that the system (98)+(103) is not equivalent to the équation curlB — aB = 0. In fact, the
projection of this one on r must be verified:

_L_ ra(singBy) _ &Be] _
i Ö [ ÔÔ d \ r

_ _ _ J_ _ ]
sinÖ [ ÔÔ dip \ r sinÖ [ dB dtp y

since —̂— y 7:— — ars inö5 r . Thus, V'o and ^1 must verify the system:
C/C? Ö(p

Hence tpi = ~r—x ̂ ~ and 7p2 = T~ , where £ is solution of the équation
§mB<kp — -0# — —

Therefore, A^^ = 0, where As is the surfacic Laplace-Beltrami operator defined by (38). So £ is a constant
function and ip\ = xp2 — 0- It follows that B$ = h$ and B^ = b^, where b^ and b^ are given by (104) and
(105). Let us check if B — (Bry Be, B^) G L2(Sle)3. First, remark that B can be written into the form:

+00 1

B-EEjjïTïj'f. (106>

1=0 m=~l v J

with

t>r = ahT{r)VsYr x er + I|-(r/ lr(r))Vsy i
m + :(Z + 1 ) ^ 7 ^ ( 0 , ^ , (107)

1 du du
where V^w = x̂ — e^ + -7T77eö dénotes the surfacic gradient of u. Since

sin y dip o6
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one has

= 0 if li ?é J2 or mx ?é ma, (108)

| ^ ( ) | 2 + | ^

At infinity the function hi looks like:

It follows

(br.er.bp.er) ~ ^ , (111)
| \ m | 2 _i_ | . . m | 2

iy ' ' ^ ' * '•

Thus, b ^ does not belong to L2(Qe)3 if hf(r) ^ 0. Hence

There is no finite-energy non-trivial linear Force-free fields in an exterior domain with a / 0 .
However, bj71 belongs to any Wk(Qe)3 for k > | . In this last situation, the linear System of équations (i) and

(ii) given above is not square. Thus

If g vérifies the hypothesis (102), then the boundary value problem (97) admits an infinity of solutions in

Wk{tt&f for any k > i .

In order to get well posedness of (97) one must add a supplementary condition. Here we propose to prescribe
the normal derivative of the radial component at the boundary:

^ = p at |x| = 1. (113)

Remark 11. Of course, others conditions at r = 1 or at infinity may exist. Durant [21] in a discussion
about extrapolation of coronal magnetic field proposed to minimize the L2-norm of the transverse component
||B x n||o,s at r = 1. One can prove easily that such a constraint leads to a condition of type (113), which is
more gênerai. Note also that, although the choice of a boundary data of type (113) has, as far as we know,
never been considered in solar physics, these data can today be provided by the new génération of télescopes.

Our aim here is to prove that the new boundary value problem (97)-(113) is well posed in
For any real number s > 0, we introducé the following space:

ns
a{S) = lue £>'(S); V V ( I + l)2s |fy(a)|2 |un2 < +°° Î >

l, 1=1 m=-l )

where uf1 = (w,YJm)5. This is a Hubert space equipped with the hermitian product:

+ OO l

(( )) — V ^ V ^ (l + l)2s\h ( ) \ :
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Remark 12. One can remark that %^(S)^^HS(S) for any s, where HS(S) is the classical Sobolev space defined
by

{ +00 l

1 = 1 m=-l

The définition of %s (S) given above is the only one we have and no other char act erization is available for the
moment.

y ^ [I + 1 ) \ui\ . < + c o >.
m=-l )

The remaining of this section is devoted to the proof of the following result

Theorem 6. For any function g in fi^(S) verifying (102) and any function p in ̂ c^1(5) ; the problem

curlB = aB, divB = 0 in Oe, B.er = g and -^- = p at |x| = 1, (114)

admits one and only one solution B 6 Wi(fle)3. Furthermore B belongs to Wk(Qe)3 for any k > — and vérifies
the estimâtes:

j l s) + ||p||w-i(S)), (115)
VB

11-^rllo.n. < Cfc,a(||g||wo(s) + | |p| |w-i ( s )). (116)

Proof. The additional condition (113) is equivalent to

h™(l)' = PT + gzm, for l > 0 and m € {0,...,/}, (117)

where pf1 = (p, Yl
rn)s- Thus, for any / > 0 and m G {0,..., Z}, Xf1 and /x̂ m are solutions of the system:

This is a non-singular linear square system whose determinant is:

a

where the two following properties of Hankel functions were used:

Thus, Xf1 and /x^ are given by

f «)-^(«))sr-^(")pD- (120)

Let us now prove estimâtes (115) and (116) and convergence of the sum (106). First, given two integers l > 0
and m G {—1,1}, we set
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b^m is a real vector field verifying curlb = ah (the indexes l and m will be dropped for simplicity). Let R > 1
and k be two real numbers and QR the domain defined by

Multiplying the équation

curlb x b = b.Vb - V^J- = 0,

by ~2k and integrating by parts over ÇlR, one gets easily after few calculas

2(2k-l) f ^dü-Sk f \h^rJ d£l = Fk(R)-Fk(l)9 (121)

where the function Fk is given by

.er |
2-|b|2](a,r)d<7.lJ3 /r J s

At r = 1, one has by (108) and boundary conditions

Fk{\) = [l\l + l)2 - o?l{l + l)]\gr\2 - 1(1 + l)|2gT + P

while at infinity the function Fk(r) looks like

| \ m | 2 _i_ \,jm 2

i'fc(r) 2ï(Z + 1 ) L J _ L _ Z _ P (122)

Indeed, orthogonality relation (108) gives

Then, (122) sterns from (111) and (112). Now, taking the limit in (121) when R tends to infinity with k = -,
z

we obtain

i + i /xr i ) (123)
l ) 2 - a2l(l + l)]\gr\2 - 1(1 + l)|2gi» + p?\2.

But,
IA?"!2 + l/̂ ri2 < CaMa)\2 (\Zl(a) - l|2|grf + W?),

where CQ is a constant not depending on l neither on m and zi (r) is the function defined by

It is well-known that the function z\ vérifies the estimate (see, e.g., [40]):

Hence,
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Thus

/ | D . e r o / i M / \ | 2 fn i i \d m\2 i (i i i \ 2 l ^ m l 2 \ / i O / i \
z / Oii <. O a /l |(O!j| l u -f- 1) gi | + U -\r 1 ) hO» I . yL/LQt)

Finally, taking the limit when R tends to infinity in (121) wit h k > - yields

< Ca,k\hh{a)\* ((l + l)4 |gH2 + (l + l)2\Pr\2) •

Thus, if g belongs to l-L^(S) and p belongs H~1(5), then the sum (106) converges and one has the estimate:

The estimate (116) is obtained by multiplying Helmoltz's équation

AB + a2B = 0,

by —^ and integrating over ÇIR, before making R tending to infinity. •

A P P E N D I X

Proof of Lemma 12

(i) First, for any j G X, Kj belongs to V and

n < — HüCfl Hri^j^

Hence, \\K\\ < —. Now, let À2 > 0 be the second eigenvalue of the Neumann problem

-Au — Xu, —- = 0.
on

Let U2 be solution of this eigenvalue problem with À = À2 and set V2 = Vw2 • Then V2 belongs to V and

I|v2||g,n i

Hence, a^ < X2 and we get (29). Similarly, one gets (30).
(ii) Suppose that F is connected and let $ be a function in HQ(Q,)3. $ can be decomposed into the sum

where s G HQ(£L) is solution of the Laplace équation As = div<I>, and ^1 is divergence-free and vérifies
$1 x n = 0 on F. It is clear that

and ||VS||§n < f ||div*||gn.



ON THE LINEAR FORCE-FREE FIELDS IN BOUNDED AND UNBOUNDED THREE-DIMENSIONAL DOMAINS 391

Hence,

g o <
|curl*||g,n) + (\\K*f ~ ^-

Aii

But, since $ € #o(fi)3, one has

Thus,

ll*llo.n < f »V*Ho.n + (II^*H2 - r
Ai Ai

Now, let LÜ\ be a function in HQ(Q) such that Au>i = Àic^i. There exists a constant vector a such that
||Vcji x allen / 0. We take $ = o;ia. Then (126) becomes

/.. *. .9 1 x n ~ ,.9
( JK" - T-) Vwi x a oQ > 0.

Ai

Hence

II^*H2>T-- (12?)
Ai

Now, let u e U. Then u can be written into the form

u = Vs + ui,

where 5 E Hg(fi) vérifies As = divu. Ui satisfies

divui =0 , ui x n = 0 on F, (ui.n, l)r = 0 (by Green's formula).

That means that Ui = ÜT*(curlu) since F is connected. Hence, for any u in £/, we have
MIo,n =

< ||ir*||2(||divu||2in + Hcurlulftn) [by (127)].

Thus, necessarily ai vérifies

a i - W\\
This inequality combined with (127) imply (31).

(iii) Assume now fi to be simply-connected. Then any vector field v in y can be written into the form

ds
where s E i71(fi)/R is solution of the Neumann problem. As = div v, — = 0. It results that

on

v||g,n = l | V < n + ||/f (curlv)||§>ft. (128)
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It is well-known that CQ = — is the best constant in the Poincaré-Wirtinger inequality
A2

U~W\ f «M^Ho* < CollV«||g(n, Vu e H^tt). (129)

Using this inequality, one can proves easily the estimate ||VS||Q Q < -=— ||diw|jo n> Substituting in (128) yields
A2

IM|g,n < r 11^ v»o.n + II*Il2||curlv||gin < sup( i , \\K\\)\\v\$.
A2 M

Hence, a0 > inf ( | | iqr \ A2) and (32) holds.
The proof of estimate (33) is dropped hère for similicity (the reader interesting in that proof can consult

référence [13], Chapter VI).

The authors wish to thank the unknown référée for helpful comments and suggestions about bibliography.
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