A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 99-112.
@article{M2AN_1999__33_1_99_0,
     author = {Wang, Song},
     title = {A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {99--112},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     mrnumber = {1685746},
     zbl = {0961.82030},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_99_0/}
}
TY  - JOUR
AU  - Wang, Song
TI  - A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 99
EP  - 112
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_1_99_0/
LA  - en
ID  - M2AN_1999__33_1_99_0
ER  - 
%0 Journal Article
%A Wang, Song
%T A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 99-112
%V 33
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_1_99_0/
%G en
%F M2AN_1999__33_1_99_0
Wang, Song. A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 99-112. http://www.numdam.org/item/M2AN_1999__33_1_99_0/

[1] D.N. De G. Allen, R.V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl Math. 8 (1955) 129-145. | MR | Zbl

[2] R.E. Bank, J.F. Bürgler, W. Fichtner, R.K. Smith, Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58 (1990) 185-202. | MR | Zbl

[3] F. Brezzi, P. Marini, P. Pietra, Two-dimensional exponentially fitting and applications to semiconductor device equations. SIAM J. Numer. Anal 26 (1989) 1342-1355. | MR | Zbl

[4] E. Buturla, P. Cottrell, B.M. Grossman, K.A. Salsburg, Finite Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Develop. 25, (1981) 218-231.

[5] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl

[6] C.J. Fitzsimons, J.J.H. Miller, S. Wang, C.H. Wu, Hexahedral finite elements for the stationary semiconductor device equations. Comp. Meth. Appl. Mech. Engrg. 84 (1990) 43-57. | MR | Zbl

[7] H.K. Gummel, A self-consistent iterative scheme for one-dimensional Steady State Transistor Calculation. IEEE Trans. Elec. Dev. 11 (1964) 455-465.

[8] P.A. Markowich, M. Zlámal, Inverse-Average-Type Finite Element Discrétisations of Selfadjoint Second-Order Elliptic Problems. Math. Comp. 51 (1988) 431-449. | MR | Zbl

[9] B.J. Mccartin, Discretization of the Semiconductor Device Equations. From New Problems and New Solutions for Device and Process Modelling. J.J.H. Miller Ed. Boole Press, Dublin (1985).

[10] J.J.H. Miller and S. Wang, A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations. RAIRO Modél. Math. Anal. Numér. 25 (1991) 441-463. | Numdam | MR | Zbl

[11] J.J.H. Miller and S. Wang, An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. RAIRO Modél. Math. Anal. Numér. 28 (1994) 123-140. | Numdam | MR | Zbl

[12] J.J.H. Miller and S. Wang, A tetrahedral mixed finite element method for the stationary semiconductor continuity equations. SIAM J. Numer. Anal. 31 (1994) 196-216. | MR | Zbl

[13] M.S. Mock, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models. COMPEL 2 (1983) 117-139. | Zbl

[14] D. Scharfetter and H.K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16 (1969) 64-77.

[15] M. Sever, Discretization of time-dependent continuity equations. Proceedings of the 6th International NASECODE Conference. J.J.H. Miller Ed. Boole Press, Dublin (1988) 71-83. | MR | Zbl

[16] J.W. Slotboom, Iterative Scheme for 1- and 2-Dimensional D.C.-Transistors. IEEE Trans. Elect. Dev. 24 (1977) 1123-1125.

[17] S.M. Sze, The physics of semiconductor devices, 2nd ed. John Wiley & Sons, New York (1981).

[18] W.V. Van Roosbroeck, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Tech. J. 29 (1950) 560-607.