@article{M2AN_1999__33_1_55_0, author = {Merrien, Jean-Louis}, title = {Interpolants {d{\textquoteright}Hermite} $C^2$ obtenus par subdivision}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {55--65}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685743}, zbl = {0920.65002}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1999__33_1_55_0/} }
TY - JOUR AU - Merrien, Jean-Louis TI - Interpolants d’Hermite $C^2$ obtenus par subdivision JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 55 EP - 65 VL - 33 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_1999__33_1_55_0/ LA - fr ID - M2AN_1999__33_1_55_0 ER -
Merrien, Jean-Louis. Interpolants d’Hermite $C^2$ obtenus par subdivision. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 55-65. http://www.numdam.org/item/M2AN_1999__33_1_55_0/
[1] Bounded Semigroups of Matrices Linear Alg. Appl. 166 (1992) 21-27. | MR | Zbl
and ,[2] A survey of curve and surface methods in CAGD. Computer Aided Geometric Design 1 (1984) 1-60. | Zbl
, and ,[3] Set of Matrices All Infinite Products of Which Converge. Linear Alg. Appl. 161 (1992) 227-263. | MR | Zbl
and ,[4] Interpolation dyadique In Fractals Dimensions non entieres et applications Éditions Masson, Paris (1987) 44-55. | Zbl
and ,[5] Interpolation through an Iterative Scheme Math. Anal. Appl. 114 (1986) 185-204. | MR | Zbl
,[6] A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4 (1987) 257-268. | MR | Zbl
, and ,[7] Analysis of Hermite-type subdivision schemes. Approximation Theory VIII.: Wavelets and Multilevel Approximation C. K. Chui and L. L. Schumaker Eds. World Scientific, Singapore (1995) 117-124. | MR | Zbl
, ,[8] Uber stetige Functionen Math. Ann. 66 (1909) 81-94. | JFM
,[9] A family of Hermite interpolants by bisection algorithm. Numerical Algorithms 2 (1992) 187-200. | MR | Zbl
,[10] Mathematical Aspects of Geometric Modeling. SIAM, Philadelphia (1995). | MR | Zbl
,