Interpolants d’Hermite C 2 obtenus par subdivision
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 55-65.
@article{M2AN_1999__33_1_55_0,
     author = {Merrien, Jean-Louis},
     title = {Interpolants {d{\textquoteright}Hermite} $C^2$ obtenus par subdivision},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {55--65},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     mrnumber = {1685743},
     zbl = {0920.65002},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_55_0/}
}
TY  - JOUR
AU  - Merrien, Jean-Louis
TI  - Interpolants d’Hermite $C^2$ obtenus par subdivision
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 55
EP  - 65
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_1_55_0/
LA  - fr
ID  - M2AN_1999__33_1_55_0
ER  - 
%0 Journal Article
%A Merrien, Jean-Louis
%T Interpolants d’Hermite $C^2$ obtenus par subdivision
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 55-65
%V 33
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_1_55_0/
%G fr
%F M2AN_1999__33_1_55_0
Merrien, Jean-Louis. Interpolants d’Hermite $C^2$ obtenus par subdivision. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 55-65. http://www.numdam.org/item/M2AN_1999__33_1_55_0/

[1] M.A. Berger and Y. Wang, Bounded Semigroups of Matrices Linear Alg. Appl. 166 (1992) 21-27. | MR | Zbl

[2] W. Boehm, G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD. Computer Aided Geometric Design 1 (1984) 1-60. | Zbl

[3] I. Daubechies and J. C. Lagarias, Set of Matrices All Infinite Products of Which Converge. Linear Alg. Appl. 161 (1992) 227-263. | MR | Zbl

[4] G. Deslauriers and S. Dubuc, Interpolation dyadique In Fractals Dimensions non entieres et applications Éditions Masson, Paris (1987) 44-55. | Zbl

[5] S. Dubuc, Interpolation through an Iterative Scheme Math. Anal. Appl. 114 (1986) 185-204. | MR | Zbl

[6] N. Dyn, D. Levin and J. A. Gregory, A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4 (1987) 257-268. | MR | Zbl

[7] N. Dyn, D. Levin, Analysis of Hermite-type subdivision schemes. Approximation Theory VIII.: Wavelets and Multilevel Approximation C. K. Chui and L. L. Schumaker Eds. World Scientific, Singapore (1995) 117-124. | MR | Zbl

[8] G. Faber, Uber stetige Functionen Math. Ann. 66 (1909) 81-94. | JFM

[9] J.-L. Merrien, A family of Hermite interpolants by bisection algorithm. Numerical Algorithms 2 (1992) 187-200. | MR | Zbl

[10] C. A. Micchelli, Mathematical Aspects of Geometric Modeling. SIAM, Philadelphia (1995). | MR | Zbl