Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 169-189.
@article{M2AN_1999__33_1_169_0,
     author = {Guermond, Jean-Luc},
     title = {Un r\'esultat de convergence d'ordre deux en temps pour l'approximation des \'equations de {Navier-Stokes} par une technique de projection incr\'ementale},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {169--189},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     mrnumber = {1685751},
     zbl = {0921.76123},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_169_0/}
}
TY  - JOUR
AU  - Guermond, Jean-Luc
TI  - Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 169
EP  - 189
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_1_169_0/
LA  - fr
ID  - M2AN_1999__33_1_169_0
ER  - 
%0 Journal Article
%A Guermond, Jean-Luc
%T Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 169-189
%V 33
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_1_169_0/
%G fr
%F M2AN_1999__33_1_169_0
Guermond, Jean-Luc. Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 169-189. http://www.numdam.org/item/M2AN_1999__33_1_169_0/

[1] C. Amrouche and V. Girault, On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Japan Acad. 67 (1991) 171-175. | MR | Zbl

[2] I. Babŭska, The finite element method with Lagragian multipliers. Numer. Math. 20 (1973) 179-192. | EuDML | MR | Zbl

[3] C. Bernardi and G. Raugel, A conforming finite element method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 22 (1985) 455-473. | MR | Zbl

[4] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). | MR | Zbl

[5] F. Brezzi, On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO R2 (1974) 129-151. | EuDML | Numdam | MR | Zbl

[6] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. | EuDML | Numdam | MR | Zbl

[7] A.J. Chorin, Numerical solution of the Navier-Stokes equations Math. Comp 22 (1968) 745-762. | MR | Zbl

[8] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations. Math. Comp. 23 (1969) 341-353. | MR | Zbl

[9] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics 5 Springer-Verlag (1986). | MR | Zbl

[10] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows J.Comput. Phys. 30 (1979) 76-95. | Zbl

[11] J.-L. Guermond, Some practical implementations of projection methods for Navier-Stokes equations. RAIRO Modél. Math.Anal. Numér. 30 (1996) 637-667. | Numdam | MR | Zbl

[12] J.-L. Guermond, Sur l'approximation des équations de Navier-Stokes instationnaires par une méthode de projection. C. R.Acad. Sci. Paris 319 (1994) 887-892. | MR | Zbl

[13] J.-L. Guermond and L. Quartapelle, Unconditionally stable Finite-Element Method for the unsteady Navier-Stokes equations, 9th International Conference on Finite Element in Fluids. Venezia, Italy, October 1995 I 367-376.

[14] J.-L. Guermond and L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection finite element method. J. Comput. Phys. 132 (1997) 12-33. | MR | Zbl

[15] J.-L. Guermond and L. Quartapelle, On the approximation of the Navier-Stokes equations by finite element projection methods Numer. Math. 80 (1998) 207-238. | MR | Zbl

[16] J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, I, II, III, and IV. SIAM J. Numer. Anal. 19 (1982) 275-311, 23 (1986) 750-777; 25 (1988) 489-512, 27 (1990) 353-384. | Zbl

[17] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, ISNM 113 Birkhâuser, Basel (1993). | MR | Zbl

[18] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag (1994). | MR | Zbl

[19] R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations. Lectures Notes in MathematicsSpringer, Berlin (1992) 167-183. | MR | Zbl

[20] R. Temam, Navier-Stokes Equations. Studies in Mathematics and its Applications, Vol 2. North-Holland (1977). | MR | Zbl

[21] R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968)115-152. | Numdam | MR | Zbl

[22] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (1986) 870-891. | MR | Zbl