@article{M2AN_1998__32_7_843_0, author = {Bao, Weizhu and Barrett, John W.}, title = {A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {843--858}, publisher = {Elsevier}, volume = {32}, number = {7}, year = {1998}, mrnumber = {1654432}, zbl = {0912.76025}, language = {en}, url = {http://www.numdam.org/item/M2AN_1998__32_7_843_0/} }
TY - JOUR AU - Bao, Weizhu AU - Barrett, John W. TI - A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 843 EP - 858 VL - 32 IS - 7 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1998__32_7_843_0/ LA - en ID - M2AN_1998__32_7_843_0 ER -
%0 Journal Article %A Bao, Weizhu %A Barrett, John W. %T A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow %J ESAIM: Modélisation mathématique et analyse numérique %D 1998 %P 843-858 %V 32 %N 7 %I Elsevier %U http://www.numdam.org/item/M2AN_1998__32_7_843_0/ %G en %F M2AN_1998__32_7_843_0
Bao, Weizhu; Barrett, John W. A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 7, pp. 843-858. http://www.numdam.org/item/M2AN_1998__32_7_843_0/
[1] Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, RAIRO M2AN 25, 31-48 (1991). | Numdam | MR | Zbl
and ,[2] A posteriori error estimators for mixed finite element approximation of some quasi-Newtonian flows, Mat. Aplic. Comp. 10, 89-102 (1991). | MR | Zbl
and ,[3] Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35-49 (1990). | MR | Zbl
and ,[4] Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64, 433-453 (1993). | MR | Zbl
and ,[5] Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68, 437-456 (1994). | MR | Zbl
and ,[6] The Finite Element Method for Elliptic Problems, North-Holland (1978). | MR | Zbl
,[7] Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9, 77-84 (1975). | Numdam | MR | Zbl
,[8] Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 3, 33-75 (1973). | Numdam | MR | Zbl
and ,[9] Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 1017-1033 (1995). | MR | Zbl
, and ,[10] Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal. 27, 1-19 (1990). | MR | Zbl
and ,[11] Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27, 1486-1505 (1990). | MR | Zbl
and ,[12] Régularité de l'écoulement stationnaire d'un fluide non newtonien, C. R. Acad. Sci. Paris 311, 531-534 (1990). | MR | Zbl
,[13] Finite Element Methods for Navier-Stokes Equations, Springer (1986). | MR | Zbl
and ,[14] A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124, 195-212 (1995). | MR | Zbl
and ,[15] A proof of Korn's inequality, Soviet Math. Dokl. 12, 1618-1622 (1971). | Zbl
and ,[16] Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO M2AN 27, 131-155 (1993). | Numdam | MR | Zbl
,[17] A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62, 445-475 (1994). | MR | Zbl
,[18] A posteriori error estimators for the Stokes equations II non-conforming discretizations, Numer. Math. 60, 235-249 (1991). | MR | Zbl
,