@article{M2AN_1998__32_7_789_0, author = {Gibel, P.}, title = {\'Etude num\'erique des oscillations des syst\`emes semi-lin\'eaires $3 x 3$}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {789--815}, publisher = {Elsevier}, volume = {32}, number = {7}, year = {1998}, mrnumber = {1654440}, zbl = {0924.65091}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1998__32_7_789_0/} }
TY - JOUR AU - Gibel, P. TI - Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$ JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 789 EP - 815 VL - 32 IS - 7 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1998__32_7_789_0/ LA - fr ID - M2AN_1998__32_7_789_0 ER -
Gibel, P. Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 7, pp. 789-815. http://www.numdam.org/item/M2AN_1998__32_7_789_0/
[1] Geometrie der Gewebe, Springer-Verlag, 1937. | JFM | Zbl
, ,[2] Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM, J. Numer. Anal., 1989, 289-319. | MR | Zbl
, ,[3] Non linear high frequency hyperbolic waves, Collection Nonlinear hyperbolic equations and field theory, 1990, 121-143. | Zbl
, ,[4] High frequency semi-linear oscillations, in Wave motion, Theory, Modelling and Computation, Springer Verlag, 1986, 202-216. | MR | Zbl
, ,[5] Resonant one dimensionnal nonlinear geometric optics, J. Funct. Anal. 114, 1993, 106-231. | MR | Zbl
, , ,[6] Coherent and focusing multidimensional nonlinear geometric optics, Preprint. | MR
, , ,[7] Generic rigorous asymptotic expansions for weakly non-linear multidimensional oscillatory waves, Duke Math. J. 70, 1993, 373-404. | MR | Zbl
, , ,[8] Resonantly interacting weakly non linear hyperbolic waves 1 : a single space variable, Stud. Appl. Math. 71, 1987. | Zbl
, ,[9] A canonical System of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79, 1988, 263-270. | Zbl
, , ,[10] Linear and non linear waves, Wiley, 1974. | Zbl
,[11] Étude numérique d'indes oscillantes non linéaires, Thèse Université Bordeaux I.
,