@article{M2AN_1998__32_6_671_0, author = {Harrabi, A.}, title = {Pseudospectre d'une suite d'op\'erateurs born\'es}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {671--680}, publisher = {Elsevier}, volume = {32}, number = {6}, year = {1998}, mrnumber = {1652664}, zbl = {0932.47001}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1998__32_6_671_0/} }
Harrabi, A. Pseudospectre d'une suite d'opérateurs bornés. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 6, pp. 671-680. http://www.numdam.org/item/M2AN_1998__32_6_671_0/
[1] Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. | MR
,[2] Collectively compact sets of linear operators, Pacific Journal of Mathematics, 25, No 3. 417- 422, 1968. | MR | Zbl
and ,[3] Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific Journal of Mathematics, 25, No. 3. 423-431, 1968. | MR | Zbl
and ,[4] Pseudospectra and singular values of large convolution operators, J. Int. Eqs. Applics, 6: 267-301, 1994. | MR | Zbl
,[5] Analyse Fonctionnelle. Théorie et applications, Masson, quatrième édition, 1993. | MR | Zbl
,[6] Lectures on Finite Precision Computations, SIAM, 1996. | MR | Zbl
and ,[7] Spectral Approximation of linear operators, Academic Press, New York, 1983. | MR | Zbl
,[8] Linear operators, part I, general theory. Wiley (Interscience), New York, 1958. | MR | Zbl
and ,[9] Theory of Difference Schemes: an Introduction. North-Holland, Amsterdam, 1964. Translation by E. Godfedsen. | MR | Zbl
and ,[10] Perturbation theory for linear operators, Springer, New York, 1976. | MR | Zbl
,[11] On Szegö's eigenvalue distribution theorem and non-hermitian kernels, J. Analyse Math., 28 : 335-357, 1975. | MR | Zbl
,[12] The spectrum of linear transformation, Transactions of American Mathematical Society, 52: 238-248, 1942. | MR | Zbl
,[13] Convergence iterations for linear equations, Birkhauser, Basel, 1993. | MR | Zbl
,[14] The variation of spectra, Duke Math. J., 5: 165-176, 1951. | MR | Zbl
,[15] Pseudospectra of Wiener-Hopf integral operators and constant-coefficient difference operators, J. Integral. Eqs. Applics, 5: 369-403, 1993. | MR | Zbl
,[16] Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162-164, pages 153-185, 1992. | MR | Zbl
and ,[17] The resolvent of a closed transformation, Bull. AMS, 44: 70-74, 1938. | MR | Zbl
,[18] Pseudospectra of matrices. In Numerical Analysis. 1991, D. F. Griffiths and G. A. Watson editors, Longman, Harlow, 1992. | MR | Zbl
,[19]Pseudospectra of linear operators. SIAM Rev., 39: 383-406, 1997. | MR | Zbl
,