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EXPANDED MIXED FINITE ELEMENT METHODS FOR QUASILINEAR
SECOND ORDER ELLIPTIC PROBLEMS, It (*)

Zhangxin CHEN

Department of Mathematics, Box 156, Southern Methodist University, Dallas, Texas 75275-0156, USA
E-mail address zchen@golem math smu edu

Abstract —Anew mixed formulation recently proposedfor hnear problems is extended to quasihnear second-order elliptic problems This
new formulation expands the standard mixed formulation in the sense that three variables are explicitly treated, ie, the scalar unknown,
Us gradient, and itsflux (the coefficient times the gradient) Based on this formulation, mixed finite element approximations of the quasihnear
problems are estabhshed Existence and uniqueness of the solution of the mixed formulation and its discretization are demonstrated Optimal
order error estimâtes in Lp and H~ s are obtamedfor the mixed approximations A postprocessing methodfor improving the scalar variable
is analyzed, and superconvergent estimâtes are derived Implementation techniques for solving the Systems of algebraic équations are
discussed Compansons between the standard and expanded mixed formulations are given both theoretically and experimentally The mixed
formulation proposed here is suitable for the case where the coefficient of differential équations is a small tensor and does not need to be
inverted ©Elsevier, Paris

Résumé. — Dans cet article, la formulation mixte précédemment proposée pour des problèmes linéaires est étendue à des problèmes
quasi-linéaires elliptiques d'ordre deux On donne alors la méthode de résolution par éléments finis pour laquelle on dispose d'estimations
d'erreurs en norme if et H~ s Déplus, des résultats de superconvergence de la méthode utilisée pour la résolution sont montrés © Elsevier,
Pans

1. INTRODUCTION

This is the second paper of a series in which we develop and analyze expanded mixed formulations for the
numerical solution of second-order elliptic problems. This new formulation expands the standard mixed formu-
lation in the sense that three variables are explicitly treated; i.e., the scalar unknown, its gradient, and its flux (the
coefficient times the gradient). It is suitable for the case where the coefficient of differential équations is a small
tensor and does not need to be inverted. It applies directly to the flow équation with low permeability and to the
transport équation with small dispersion in groundwater modeling and petroleum reservoir simulation.

In the first paper of the series [5], we analyzed the expanded mixed formulation for linear second-order elliptic
problems. Optimal order and superconvergent error estimâtes for mixed approximations were obtained, and
various implementation techniques for solving the system of algebraic équations were discussed.

In this paper, we consider the expanded mixed formulation for a gênerai quasilinear second-order elliptic
problem. The analysis for the nonlinear problem is completely different from that for the linear problem. First,
existence and uniqueness of solution to the nonlinear expanded discretization need to be proven explicitly. This
is accomplished through the Brouwer fixed point theorem. Second, the nonlinear error analysis heavily dépends
upon the estabhshed existence resuit and is much more difficult. Also, the post-processing scheme proposed here
for the first time for nonlinear mixed methods is not a straightforward extension of their hnear counterparts.

(*) Manuscript Received November 22, 1995
1991 Mathematics Subject Classification Pnmary 65N30, 65N22, 65F10
Key words and phrases expanded mixed method, quasihnear problem, error estimate, implementation, finite différence, superconver-

gence, postprocessing
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This paper also gives a comparison between the standard mixed formulation and the expanded one. For certain
nonlinear problems, we show that the expanded formulation is superior to the standard one in that the former leads
to the dérivation of optimal order error estimâtes, while the latter gives only suboptimal error estimâtes for the
mixed method solution. This result is also justified through numerical results. In the previous papers [6, 7, 14],
only the Raviart-Thomas spaces have been considered for nonlinear problems. Here we are able to consider all
existing mixed finite element spaces [2, 3, 4, 8, 11, 15, 16, 17].

In the next section, we develop the expanded mixed formulation for a fairly gênerai nonlinear second-order
elliptic problem. It is proven that this formulation has a unique solution and is equivalent to the original differential
problem. Then, in § 3 we show that all existing mixed finite éléments apply to this formulation. In particular, it
is demonstrated that the approximation formulation has a unique solution and gives optimal error estimâtes in
If and H~ s. In § 4, we propose and analyze a postprocessing method for improving the scalar unknown and dérive
superconvergent estimâtes. In § 5, we extend the analysis to a nonlinear problem and discuss the différence
between the usual mixed method and the standard one. Finally, in § 6 we briefly discuss implementation
techniques for solving the system of algebraic équations arising from the expanded mixed method and present
numerical examples to illustrate our theoretical results.

2. EXPANDED MIXED FORMULATION

Let Q be a bounded domain in Kïn, n = 2 or 3, with the boundary dQ. We consider the quasilinear problem

(2.1a) Lu = - V . ( a( u ) Vu - b{ u ) ) + c{ u ) = ƒ in Q ,

(2.1b) u = - g ond£2,

where we assume that the coefficients a : Ö x [R ̂  [R, b : Ù xU —> [Rn, and c i D x ^ ^ i ^ are twice
continuously differentiable with bounded derivatives through second order; moreover, we assume that

(2.1c) (a(u)^v)>ao\\v\\\ u e U, /u e (L2(Q) )", a0 > 0 .

(Hk(Q) = Wkj2(Q) is the Sobolev space of k differentiable functions in L2(Q) with the norm || . \\k ; we omit

k when it is zero.) We also assume that for some £ ( 0 < £ < l ) and each pair of functions

(ƒ, g) G H\Q) xH3/2 + £(dQ) there exists a unique solution w e H2 + S(Q) to (2.1).

Let

V=H(div,Q) = {v<E (L2(Q))n : V . i; e L2(Q)},

W=L2(Q) ,

and let ( . , . ) s dénote the L2(S) inner product (we omit S if S = Q). Then (2.1) is formulated in the following
expanded mixed form for (a, À, w) e V x A x W:

(2.2a) ( a (« ) A , / / ) - ( C T . A O + (&(")> A*) = 0, VA/e A,

(2.2b) (À, v) - (u, V . v) = (g, v . v)dQ, Vu G V,

(2.2c) ( V . a , w ) + (c(W),w) = (/,w), \/w e W,

where v is the outer unit normal to the domain
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To analyze (2.2), let U = WxA with the usual product norm | | T | | ^ = H W | | 2 + \\JU\\2, T = (W,/U) G U9 and
introducé the bilinear forms s é ( . , . ) • U x U - » M and M{ . , • ) : £/ x F -> IR by

Then (2.2) can be written in the form for (/, a ) G [ / X V such that

(2.3a) J ^ ( / , T) + # ( T , a) + ̂ ( / , T) = J ^ ( T ) VT e f/,

(2.3b) # ( * , i? ) = - ( g 9 v . v ) d Q 9 VP e V,

where

( ) = (/,W), T = ( W , ; I ) € U.

Finally, we define

Z = { T E U:m(r,v) = Q, Vü G F} .

The next result can be found in the first paper [5].

LEMMA 2.1: Lef T = (w,/i) e £ƒ. r ^ n T G Z (f and onty ?ƒ w G Hl
0(Q) and // = - Vw.

THEOREM 2.2: Tjf (/ , a ) e UxV is the solution of (2.3) WÏÏ/Ï ^ = (M, A), r/ien M G Hl(Q) is the solution
of (2.1) WÏY/I A = -Vw anö? wldö = g. Conversely, if u G Hl(Q) is the solution of (2.1) wiïft " l a o " ^ ' ̂ e n

(2.3) &ÛLÇ ^ solution (x^cr)^UxV with X=(u> A), A = - Vw, and er = - ( a ( u ) V K - & ( " ) ) •
Proof First, let ( j , er) G £/x F be the solution of (2.3) with j = (w, A). Without loss of generality, let

g = 0 (otherwise, let uoe Hl(Q) such that wo|3jQ = 0 and consider u — uö [12]). Then (2.3b) with
g = 0 implies that x G Z so that, by Lemma2.1, u G Hl

0(ü) and A = - Vw. Hence, for all w G H\(Q) and
/Li = - Vw, it follows from Lemma 2.1 that

i.e.,

(a(u) Vw, Vw) + (&(«), VW) + (e(w), w) = (ƒ, w), Vw G J

Hence, w is a weak solution of (2.1); i.e., the solution of (2.1) [9].
Next, we assume that u G H\{Ü) is the solution of (2.1), Set # = ( M , A) with A = — Vw and

o- = - (a(w) Vw - b(u)). Then it follows from Lemma2.1 that x^Z, so (2.3b) with g - 0 holds. Thus,
(2.3a) remains to be proved. For each T G U with T = (W, JU),

= (/,w), Vwe W,

vol. 32, n° 4, 1998



504 Z. CHEN

which implies (2.3a). O

3. MIXED FINITE ELEMENTS

To define a finite element method, we need a partition ê\ of Q into éléments E, say, simplexes, rectangular
parallelepipeds, and/or prisms, where only edges or faces on dQ may be curved. In êh, it is also necessary that
adjacent éléments completely share their common edge or face; let dS>

h dénote the set of all interior edges
( n = 2 ) or faces ( n = 3 ) e of êA.

Since mixed finite element spaces are finite dimensional and defined locally on each element, for each
E G ê\ let Vh(E) x Wh(E) dénote one of the mixed finite element spaces introduced in [2, 3, 4, 8, 11, 15, 16,
17] for second-order elliptic problems. Then we define

y4A = {/ie A:v\E<z Vh(E) for each£ e êJ ,

Vh = {ve V:V\E<E Vh(E) for each E G S J ,

The expanded mixed finite element method for (2.1) is to find (ah, Xh, uh) G Vh x Ah x Wh such that

(3.1a) (a(uh)X„ii)-(°h^) + (Kuh),Li) = 0, V̂  G Ah,

(3.1b) (Av v) - (Mfc, V . Ü) = (ff, t? . v)3Of Vü G V„

(3.1c) (V.a A ,w) + (c(Mfc)fw) = (ƒ,")> VweW f t .

We shall establish existence, uniqueness, and convergence results for (3.1) in this section. For simplicity, we
concentrate on the planar case; an extension to the space case is straightforward. We mention that while an extra
unknown is introduced in (3.1), the computational cost for sol ving (3.1) is the same as that for sol ving the usual
mixed method, as shown in § 6.

3.1. Existence

C and Cx are generic constants below, where Cl dépends on || u || 2 + £, at most quadratically. Each of our mixed
finite element spaces [2, 3, 4, 8, 11, 15, 16, 17] has the property that there are projection operators
nh\{H\Q))n ^>Vh and Ph = L2 -projection: L2(Q) -> Wh such that

(3.2a) \\v-nhv\\ ^ C| |ü| | rA
r , 1 ̂  r < Jk+1,

(3.2b) \ \ V . ( v - I 7 h v ) \ \ ^ C \ \ V . v \ \ r h \ O ^ r ^ k * ,

(3.2c) \\w~Phw\\_s^ C\\w\\rh
r + S, 0 ^ 5, r ^ fc* ,

and

(3.3a) (V .(v-Uhv),w) = 0, Vw e Wh,

(3.3b) (V . i ? ,w-P A w) = 0, Vi?eVh ,

where &* = / : + ! for the Raviart-Thomas-Nedelec spaces [17, 15, 16] and the Brezzi-Douglas-Fortin-Marini
spaces, k* = k for the Brezzi-Douglas-Marini spaces and Brezzi-Douglas-Durân-Fortin [4, 2], and the Chen-
Douglas spaces include both cases. Also, let Rh be the L2 -projection onto Ah. Then we see that

(3.4) Gi-tfA/i,T) = 0, VveA,TeAh,
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and

(3.5) ||Ai-JRAAi||_J

For the analysis below, we write

(3.6) a(uh)-a(u) = -au(uh) (u-uh) =-au(ü) (u - uh) + auu(uh) (u - uhf ,

where

f

E-
E

are bounded in Ù. Similarly, we write

Jo

Jo

(3.7) b(uh)-b(u)=-bu(uh)(u-uh)=-bu(u)(u-uh)+buu(uh)(u-uhf,

(3.8) c(uh) - c{u) = - cu(uh) (ii - uh) = - cu(u) (« - iih) + cuu(uh) (« - Mf t)
2 ,

where bu(uh), buu(uh), cu{uh) and cuu(uh) are bounded functions in £2. We now subtract (3.1) from (2.2) to obtain
the error équations

(3.9a) (a(u)(l-Xh),^i)~(cT-ah^) + (b(u)~b(uh)^)^aa(uh)~a(u))Xh^), Vjue Ah,

(3.9b) ( l - kh, v ) - ( u - uh, V . v ) = 0, V Ü G V P

(3.9c) (V.(a-ah),w) + (c(u)-c(uh),w) = 0, Vw e Wh.

Substituting (3.6)-(3.8) into (3.9), we see that

(3.10a) u h u h h u h h k h

(3.10b) ( X - Ah, v ) - ( u - uh, V . v ) = 0, Vi? e Vfc,

(3.10c) (V.(a-ch),w) + (y(u-uh),w) = (cuu(uh)(u-uh)
2,wX Vw e WA ,

where r ( M ) = aw( w ) X + 6M( w ) and y{ u ) = cu( u ). Now let M: / / 2 ( O ) -> L2( D ) be the linear operator

Mw = - V . (a(u) Vw - r(u) w) + yw ,

and let

( P : V A x ^ x W f c - » V f c X y l h x W f c

vol. 32, n° 4, 1998
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be given by &( ( T , rj, p)) = (x , y, z), where (x,y,z) is the solution of the system

(3.11a)

(3.11b)

Ak,

- y , i > ) - ( M - z , V . i ; ) = 0, Vu e Vh,

(3.11c) ) , Vw

We assume that the restrictions of M and M* (its adjoint) to H2(Q) n H\(Q) have bounded inverses. This is
satisfied if cu 3= 0 [12]. Then, the existence and uniqueness of the solution to (3.11) is known [5] since (3.11)
corresponds to the expanded mixed method for the linear operator M. Now we see that existence of a solution
to (3.1) is equivalent to the problem that the map 0 has a fixed point. Consequently, the solvability of (3.1) follows
from the Brouwer fixed point theorem if we can prove that <P maps a bail of Vh x Ah x Wh into itself. Toward
that end, we need the foliowing définition [10].

We say that Q is (s + 2, #)-regular with respect to M if the Dirichlet problem

(3.12a)
(3.12b)

is uniquely solvable for y/ e L2(Q) and if

M*ç>= y/ in Q ,

<p = 0 ondQ

(3-13)

LEMMA 3.1: Assume that 2 ^ 6 < °o and Q is (s + 2, Q')-regular with respect to M, where
0'= 6/(0-1) is the conjugate exponent of 9. Let £ É L2(O), 0 e V, Ce L2(Q), and r e L2(Q). Tf
n e Wh satisfies the system

(3.14a)
(3.14b)
(3.14c)

(& v ) - (TT, V . v ) = 0,

( V . 0 , w ) + (yrc, w) = (r, w),

Ï\? a constant C = C(9, a, F,y,Q) such that

(3-15) C{(U\\ l l y l l } -

Moreoven if £ e Lö(*2), 0 e W°'ö( div
then for 0 ^ s ^ 2 ik*

; V . D G LB(Q)}9 r e

+ l.fc + 1) M *- |t r.min(j + 1,

(3.16)
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Proof: We only prove (3.16); (3.15) can be shown more easily. Let y/ e WS'0'(Q) and q> e Ws + 2'e'(Q) be the
solution of (3.12). Then, by (3.3), (3.14), and intégration by parts, we see that

(n , y/) = (n , M*q>) = (n, - V . (a(u) Vq>) - TVcp + yq>)

(3.17)

- RhV<p) + (yn, <p - Ph<p) .

Applying (3.2a), (3.2b) and (3.5), we observe that

fl I I f f » H , +

\(<t>,V<p-RhV9)\

\(V.<p,<p-Ph<p)\

\(rn,V<p-RhV<p)\

\(yn,<p-Ph<p)\

Substitute these inequalities into (3.17) and use (3.13) to obtain

(3.18)

First, consider 5" = 0 ; for /z sufficiently small, the /z||7t||0 ö term on the right-hand side of (3.18) can be
absorbed into the left-hand side, and the result (3.16) has been established for 5 = 0. Then, for s > 0, apply
(3.18) again, the established result for s = 0, and the interpolation result [13]

to obtain (3.16) since ^ * ^ H 1 and 5^2^*. •
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We now turn to existence of a solution to (3.1). For this we rewrite (3.11) by shifting (M, X, a) to
(Ph u, Rh X,nha) and using (3.3a), (3.3b) and (3.4) as follows:

(3.19a) (a(u)(RhX-y),n)

h h h-u),n), Vue Ah,

(3.19b) (RhA-y,v)-(Phu-z,'V.v) = 0, Vv e Vh,

(3.19c) (V.(nha-x),w) + (y(Phu-z),w)

= (Suu(p) (u - p)\w) + (y(Phu - u),w), \/weWh.

Let iV~ h = Wh and «Sf h = Ah with the stronger norms || w \\ i(rh = \\ w \\ 0 e and II j" II ̂  = II i" II0 2 + c respectively,
where 6= ( 4 + 2 e ) / e > 4 .

THEOREM 3.2: For S >0 sufficiently small (dependent ofh), <P maps a bail of radius SofVhx ££h x 1Vh onto
itself.

Proof: Let

(3.20) \ \ n h a - x \ \ v < ô , \ \ P h u - p \ \ 0 J I < ô , | | / ? A A - ^ | | 0 2 + £ < ^ .

We now apply (3.15) to (3.19) with

C = (âuu(p) A + b,m(p)) (u- pf + üJLp) ( « - p) (X-ti) +a(u) (RhX- A)

+ G - nha + r(ph u-u),

r = cuu(p) (u - p)2 + y(Phu - u) .

First, note that, by (3.2a), (3.2b) and (3.5),

IKII + Hr|| < C { | | « - / > | | S > 4 + \ \ u - p \ \ 0 t 0 U - n \ \ ^ 2 + e

+ \\RhX-X\\ + ||ff-77fc<r|| + | | P A « - « | | }

« C{\\u-Phu\\2
oe+ \\p-Phu\\lo + h \\u\\2

so that, by (3.2), (3.5), (3.20), and the Sobolev embedding inequalities [1]

ll«llM + . ^ C J « | | 2 + „ | | « | | l f ^ C , | | « | | 2 + , ,

we see that

(3.21) |KII + I M I ^ C } ( h + Ô 2 ) ,
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where Cx~ C{ || u ||2 + e ) . If we take the last term on the left side of (3.19a) and (3.19c) over to the right side,
the left side in (3.19) becomes the expanded mixed method for the differential operator — V . ( Û ( M ) V ) . It
follows from [5] that

(3.22a) \\nha-x\\v^C{\\Phu~z\\

(3.22b) \ \ R h l - y \ \ < C ( \ \ P h u - z \ \ + HCII + I M I ) .

Now, apply (3.15) to (3.19) to obtain

^A-y | | + \\nho-x\\)h210

Consequently, it follows from (3.21) and (3.22) that

(3-23) WP.u-zW^e^C^h+ö2),

for h sufficiently small. Exploit (3.21)-(3.23) again to see that

(3.24a) \\nh(T-x\\v** C^h + Ö2),

(3.24b) \\Rh*-y\\ * Cx(h + Ö2).

Using the quasiregularity of Th, we find that

(3.25) \\Rh*-y\\oa + Ë^Ch~e/(2 + e) I I * * * - y II ^ c 1 / î - £ / C 2 + e ) ( / l + ̂ ) .

Finally, let h<(2Cl )" (4 + 2fi)/(2 " e) and choose ö = 2 C1 h
2/{2 + s\ Observe that, in order to have

Cx h
2/(2 + e) < Ô/2 ant C, h~ £/(2 ^ e ) Ô2 ̂  Ö/2, Ô must belong to

[ 1 , ( i r £)] * 0 ,

which is satisfied for h and ô as chosen. Now, by (3.23), (3.24a) and (3.25), for such chosen h and ô, we have

(3.26) \ \ n h ( T - x \ \ v < ö , \ \ P h u - z \ \ 0 } e < ô , \ \ R h i - y \ \ O i 2 + s < s .

That is, 0 maps the bail of radius <5, centered at (IJh a, Rh A, Pku) onto itself. D

3.2. L2 -error estimâtes

Assume momentarily that (3.1) has a unique solution which, at least for small h, will be established later. To
obtain error estimâtes, we rewrite (3.9), by (3.6)-(3.8), as follows:

(a(u) (X- lh),jj) - ( a - <r fc,/i ) + ({àu(uh) Xh + bu(uh)) (u-uk)9fi) = 0, Vju e A h ,

( A - A h , t ? ) - ( u - M f c , V . i ? ) = 0, Vv e Vh,

(V.(a-ah\w) + (cu(uh)(u-uh),w) = Q, Vw G Wh .

vol. 32, n° 4, 1998
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Define

y = u-uh, z = Phu-uh.

We then have with Th = au( uh ) kh + bu( uh )

(3.27a) h h h

(3.27b) (a , ü) - (z, V . 17) = 0, Vo
(3.27c) (V.rf ,w) + (cB(MA)z,w) = (cl((Mfc)(Pfcii-i<)>w), Vw

Or, equivalently, as a resuit of (3.3b) and (3.4),

(3.28a) ( f l (« )a > / i ) - (d , A i ) + (/;z,Ai) = ( rh(Phu-u)f/t), V/u e 4 , ,
(3.28b) ( )8 , i ; ) - ( z ,V . i ; ) = 0, VÜ e VA,
(3.28c) ( V . ^ w ) + (cu(iifc)z,w) = (cB(M fc)(Phii-M),w), Vw e W,.

Observe that (3.27) or (3.28) corresponds to the mixed method for the linear operator N: H2(Q) —» L2{Q)
given by Âw = - V . (a(u) Vw - Th w) + cu(uh) w. As shown in [14], it follows from the results (3.26)
in the proof of Theorem 3.2 that there is an h0 such that the restriction of its adjoint TV* to H2(Q) n Hl

Q(Q) has
a bounded inverse for h < h0. Now we prove the next result.

THEOREM 3.3: Assume that Q is (2,2)-regular with respect to M. Then for h sufficiently small

(3.29a) \\u-uh\\ ^ C 1 ( | | M | | ^ r + IMI n + * I . *
r i ) ,

2 ^ r ^ k + 2, 1 ^ rj ^ A:* ,

(3.29b) P - 2 J I + | | a - a j | ^ ^ ( 1 1 ^ 1 1 ^ ^ " + | |u| | r i/i
r i+ HV.al l^^"" 1 1 1 1 ^^^) ,

1 ^ r ^ A:+ 1,0 ^ rj ^ ik* ,

(3.29c) | | V . ( a - a J | | ^ ^ ( 1 1 1 * 1 1 ^ ^ ' + | |w | | r i / i r i + || V . a|| ri A
r i).

1 ^ r ^ ik+ 1,0 ^ rj ^ ik* .

Proo/; Using (3.26) with 5 = 2 q/z2 / ( 2 + e), the embedding relation H1 + e(ü) cz Tr /2 '°°(^), and the
quasiregularity of T̂ , we see that

P J I o . - ^ II/ÏII0.-+ ll^^-llo.-

(3.30) ^ CA-2/(2 + i )
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EXPANDES MIXED FINITE ELEMENT METHODS 511

so that Il-Tftllo» is bounded by Cv Now, apply (3.16) to (3.27) to obtain

IUII < C{( || a|| + \\d\\ + \\rh(Phu-u)\\)h

+ \\rh(Phu-u)\\_l+\\cu(uh)(Phu-u)\\_2}.

Furthermore, by (3.2c) and (3.30), we see that

(3.32) \\rh(Phu-u)\\ h+ \\ïh{Phu-u)\\_l =S C1\\u\\rih
r' + 1, O^r^k*,

(3.33) \\ch(uh)(Phu-u)\\ h+ \\ch{uh)(Phu-u)\\_2^ Cr \\ u \\ r> hr< + l 0 « rx ^ k* .

It remains to estimate a, d, and || V . d\\. As in the proof of Theorem 3.2, it follows from (3.28) [5] that

WPW + \ \ e \ \ v ^ C x ( \ \ n h a - a \ \ + \\X-RhX\\ + \\y || ) ,

so that, by (3.2a) and (3.5),

(3.34) HUI + | | g | | v ^ C 1 ( | | « | | r + I A r + || y H), l^r^k+1.

Now, apply (3.2a), (3.2b), (3.5) and (3.34) to obtain

(3.35a) l |a | | < C 1 ( | | M | | r + 1 / l
r + | | y | | ) , 1 s» r « * + 1 ,

(3.35b) lldll « C , ( | | u | | r + ^ " + 1 1 7 1 1 ) , l ^ r ^ k + 1 ,

(3.35c) HV.dll ^ C 1 ( | | V . a | | r i ^ 1 + \\u\\rh
r+ \\y\\), 0 « rx « k*,l « r ^ k + 1 .

Substitute (3.35a)-(3.35c) into (3.31) and use (3.2c), (3.32) and (3.33) to obtain

C\ ^ ^ ^ 7 It ^~ l* ( li \\ pi -4- 7̂  h 5 -I- I \ Z (T Vi ' i 1 <Z. y ^C lt~ -\- 1 O '"^ Y ^^ ^"^
^J .*J\JJ j | <, II ^-- \-> i y H W | | , i ft- i^ H IA> | | / t i^ | | V • \J | | i fc j , J. " ^ f * ^ A. T^ J-, \J ~^ / i ~^: l\, ,

for /z sufficiently small. Now, combine (3.2c), (3.35) and (3.36) to yield the desired result (3.29). D
We remark that the L -error estimâtes in Theorem 3.3 are optimal both in rate (for any h) and in regularity.

Also, as a result of (3.36), we have

(3.37) \ \ P h u - u h \ \ ^ C l \ \ u \ \ r h k " + \ r = m a x ( f c * + 1 , 3 ) ,

which is a superconvergence result and is needed in the analysis of the later postprocessing method. Note that
in the case where k* = k + 1 we have the superconvergence order O(hk + 2), and in the case where
k* = k we have O(h + 1). For the linear case where a does not depend on the solution u and b = c = 0 in
(2.1), we have shown a superconvergence result, which is of order O(hk + 2) for both cases [5]. We have a
superconvergence only of order O(h + l ) for the latter case for the present nonlinear problem because the
coefficient a dépends on u and b and c are not zero. The same remark applies to the postprocessing method
proposed in § 4.
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3.3. Uniqueness

We now demonstrate the uniqueness of the solution to (3.1). Let (u\ X\ al) e Wh x Ah x Vh be solutions
of (3.1), i — 1, 2. Note that it follows from Theorem 3.3 that these two solutions satisfy the error bounds in (3.29)
provided they satisfy (3.26). Then the quasi regularity of Th and the error bounds imply that X1 is bounded by
II M || 2 + e, Ï = 1 , 2. Let ü = ul-u2, X = Xl-X2, and â = a1 - a2. Then, by (3.1), we see that

(3.38a) (a(ul) 2, JJ) - (â, fi) + (âu(u
2) X2 + bu(u2)) ü, ,u = 0, V̂u e ^ ,

(3.38b) (1 , Ü ) - (ü, V . u ) = 0 , Vü e VA,

(3.38c) ( V . â , w) + (^H(a2)ü,w) = 0, Vw e Wk.

Then, as in the linear case [5], we have

(3-39) IUII + \\â\\v* CJÜW .

Also, we rewrite (3.38) in the form

Then, apply (3.15) to this system to see that

which, together with (3.39), implies that

Thus, M1 = M2 for /i small enough. So, (3.39) yields that A1 = X2 and al = o2. Hence, the uniqueness is shown.

3.4. H~ s{Q)-error estimâtes

Apply (3.16) to (3.27) with 6 = 2 to see that

(3.40) + HV.rfll

Then it follows from (3.2c) and (3.29) that

\u-Phu\\_s+ \\z\\_s
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(3.41) C

0 ^ s

= fc* - 1, 1 ^ r

k* ,

+ 1, 1 ^ f k* ,

s = k*, 1 ^ r ^ k+ 1,0

Now, let ^ G /^( f l ) . By (3.3a) and (3.27), we have

= (d, (p - Rh<p) + (a(u) a, Rh<p) + (rhz, Rh(p) - (rh(Phu - u), Rh<p)

= (d,<p-Rh<p)~ (a(u)a9q>-Rh<p) + ( a, a<p - I7h(a<p))

+ (z,V . (fl(«) <p)) - (fhz, <p - Rh<p) + (fhz, <P)

+ (rh(Phu- u),q> - Rh<p) - (rh(Phu- u),q>) ,

so that

\{d,<p)\ « ^{( l l r f l l + | | a | | + llzll + | | P h « - « | |

+ \\z\\_s+l+\\Phu-u\\_s)\\<p\\s.

This inequality, together with (3.29b), (3.2c) and (3.40), implies that

(3.42) \<r-oh\\_,*kCx

0 ^ s ^ Jfc* - 1, 1 < r ^ k + 1, 1 « r, « k* ,

s ^ k*, 1 ^ r ^ k + 1, 0 s£ rx

The same result holds for A - Xh by means of a similar argument. Finally, using (3.2c) and (3.27c), we see that,
for <pe HS(Q),

= ( V . d, <p - Ph <p) - (cu(uh) z, <?) + (cu(uh) z, q> - Ph g>)

+ (cu(uh) (Phu - u), <p) + (cu(uh) (Phu - M), Ph<p - f) .

Consequently, we have

IIV . {o - ah)\\_ s^ C{( || V .d|!

(3.43)

The results in (3.41)-(3.43) can be summarized in the following theorem.
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THEOREM 3.4: Let Q be (s + 2, 2)-regular with respect to M. Then for h sufficiently small the results in
(3.41)-(3.43) hold.

3.5. Lp -error estimâtes

The next theorem can be easily shown from (3.2c), (3.3b), the triangle inequality, and the quasiregularity
o f Th-

THEOREM 3.5: There exists a constant C1 independent of h such that

1 ^ r ^ Jfc + 1 , 0 ^ ^ ^ fc*, 2 ^ / 7 ^ o o .

4. POSTPROCESSING AND SUPERCONVERGENCE

In this section, we consider a postprocessing scheme, which leads to a new, more accurate approximation to
the solution than uh. The present scheme is an extension to the nonlinear case of the postprocessing procedure
considered in [5] for the expanded mixed method for the linear problem. A similar approach for the usual Hnear
method is given in [18]. Let

W*h = {w G W: W\E<E R(E) for eachE G é?h},

where / ? (£ ' )= Pk*(E) if E G Sh is a triangle and R(E) = Pk*(E) ® Pk*(E) if E e êh is a rectangle. Then
the postprocessing scheme is given for uh G W*h as the solution of the system

(4.1a) (ulDE=(uh,l)E,Ee <f, ,

(4.1b) (a(uh) \uh - b(uh)9 Vv )E + ( c ( u j , v )E = (ƒ, v )E - {ah . vE, v)dE$

\/v G R(E),E<E S>
h,

where (uh, ah) is the solution of (3.1) and vE is the outer unit normal to E.
To see that there exists at least one solution uh to (4.1), let us consider the map 5*: Wh —» Wh defined by

(4.2a) E h E ,

(4.2b) (a(y)V(Sy)-b(y),Vv)E+(c(uhXv)E=(fv)E-(ah.vE,v)dE,

Vu G R(E),Ee gh,

for y G W*h. Note that, by (3.1c),

(c(uh), v)E= ( ƒ v)E- (ah . vE, v)BE§ Vv G PÖ(E) ,

so that the linear équations (4.2) define S uniquely. Now, choose v = Sy in (4.2b) to see that the range of S is
contained in a bail. Since S is clearly continuous, the Brower fixed point theorem implies that (3.4) has a solution,
as illustrated in Theorem 3.2. The argument in § 3.3 can also be used to show uniqueness of the solution for h
sufficiently small.
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To carry out an error analysis for (4.1), we also need a family {Uh}0 < h < j of continuous spaces in Ù, which
are piecewise polynomials over é>h, such that

(4.3) in f{ | | i> -{ | | + fc||V(v - O || + h2\\v - Ç|| 1>6 : £ e Uh) ̂  C\\v\\sh
s,

if 2 ̂  s ^ fc* + 1. Finally, let P £ dénote the L2 -projection onto PQ(E). Because of the finite di-
mensionality of each Uh7 the infimum in (4.3) is achieved. Let üh G Vh be such that
|| u - üh || + h || V( u - üh ) || + h21| u - üh || j 6 is minimal. Then it follows from (4.3) that

(4.4) I | V W J | 0 J 6 ^ C | | M | | 1 J 6 ^ C | | M | | 2 + £ .

THEOREM 4.1: Let u e H2 + £(r2) n Hk + 2(Q) be the solution of (2.1) and w* fce r/ie solution of (4.1). 77zen

(4.5) H M — «; || ^C1 | |u | | rA
f c* + 1, r = m a x ( * * + l f 3 ) .

Proof: By (2.1) and the relation a = — (a(w) Vw — Z?(w) ), we see that

(4.6) {a{u)Vu-b{u),Vv)E+{c(u),v)E=(f,v)E-{o.vE,v)aE, V»e«(£).

Consequently, subtract (4.1) from (4.6) to yield the error équation

(Û(«)VM - a(uh) Vu*, Vv)E - (b(u) - b(uh), v )E+ (c(u) - c{uh), v)E

= ((<r-ah).vE,v)dE, VveR(E).

This inequality, together with (2.1c), implies that

= ao\\V(I-PE)(üh-uh)\\
2
E

^ (a(uh)V(I - PE) (üh- uh),V(I - PE) (üh- uh))E

= (a(u)V(üh- u),V(üh- uh))E+ ([a(uh) - a(u)] Vüh, V{üh - uh))E

+ (b(u) - b(uh),V(üh- uh))E- (c(«) - c( «„),(/ - PE) (üh- uh))E

(4.7) -{{a-ah).vp (I - PE) (üh - uh))BE

^ C\\V(üh- uh)\\E \\V(üh- uhnE

+ \\a(uh)-a(u)\\0XE\\Vùh\\ÛAE\\V(ùh-uh)\\

+ \\b(u) - b(uh)\\E \\V(üh- uh)\\E+ \\c(u) - c(uh)\\E UI - PE) (ûh- uh)\\E

ljj(I-PE)(üh-uh)\2dSj

Note that a scaling argument implies that

(4.8) KI-PE)(üh-uh)\\E^ChE\\V(I-PE)(üh-uh)\\E.
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Exploit (4.4), (4.7) and (4.8) to obtain

l | V K - i O l | l ^ C 1 { | | V ( « f c - « ) | | E + \\a(uh)-a(u)\\03E

(4.9) + \\b(u) - Kuh)\\E + hE\\c(u) - c(uh)\\E

1/2 ]

UEjj(ah-a).vE\2ds\

Now, using the interpolation resuit

it follows from (4.8), (4.9), and the assumption on the coefficients a, b and c that

\üh-uh\\E

(4.10)

Since PE is bounded, it follows by (4.1a) that

which, together with (4.10), yields that

\u-uh\\E + hE\\u-uh\\E

+ \\PE(üh-uh)\\E.

üh- u)\\ E+ | | M - M

\hE[j{eh-o).vE\2ds\

\ah-u\\E+\\phu-uh

Sum this expression over all E e <£\ to obtain

«cJ hl ||V(aA-«)|| +h\\u-uj +1 X hE[ \(<J-nha).vE\2ds
1/2

1/2 1

\(I7h*-ah). vE\2ds \+\\üh- «|| + \\Phu-Ui

h\ ||V(üfc-M)|| +h\\u-Uh

1/2

\(a-nha).vE\2ds

\a-nha\ \o-ch\\)+ \\üh-u\\ + \\Phu-uh\\},
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for h sufficiently small. Finally, apply (3.29), (3.37), (4.3), and the approximation property of IIh to obtain the
desired result (4.5). •

5. EXTENSION TO A NONLINEAR PROBLEM

In this section, we extend the previous analysis to the nonlinear problem

(5.1a) - V.A(jt, Vu)=f(x) in f i ,
(5.1b) u = -g on dÜ,

and point out a différence between the usual mixed method and the expanded mixed method. We assume that A:
Q x Rn —> Rn is twice continuously differentiable with bounded derivatives through second order and that (5.1)
is strictly elliptic at X in the sense that there is a constant a0 > 0 such that

(5.2) ^TDA(x, X) £ > aöU\\2
u«, £ e R", (*, A) e Ö x R",

where DA(x, X) = (dAJdXj) is the n x n Jacobian matrix. The variable x is omitted in the notation below.
Using the previous notation, the expanded mixed form for (5.1) is formulated as follows:

Find ( er, X, u ) G V x A x W such that

(5.3a) (A(A),Ai) + ((T,/i) = O, Vji e A ,

(5.3b) (A,u) + ( i i , V . ü ) = (0 , i> .v) a u , V Ü G V,

(V.cr, w) = (ƒ, w), Vwe W.

As in Theorem 2.2, it can be shown that (5.3) has a unique solution and is equivalent to (5.1) through the relations

X = Vu and <r = - A ( V « ) .

The expanded mixed solution of (5.1) is ( ah, Xh, uh ) e ^ x ^ x ^ satisfying

(5.4a)

(5.4b) ( Xh, v ) + ( uh, V . v ) = O, Vu e VA ,

(5.4c) ( V . ah9 w) = (ƒ w), Vw e W, .

Also, using the arguments in § 3, it can be seen that (5.4) has a unique solution for h > 0 sufficiently small and
produces optimal error estimâtes in Lp and H~ s. In particular, we state the L2 - error estimâtes as follows:

1 \\u\\rh\ 2 ^ r ^ **, k ^ 2 ,

|| M || 2 /z, ^ = 1, in the case of k* = k ,

|| M |L fc* + \ k = 0, 1, in the case of &* = k + 1 ,

(5.5b) P - A J I ^ Cj || M || r + j ftr, 1 ^ r ^ £+ 1 ,

(5.5c) || a - oh || ^ C! || M || r + x h\ 1 ^ r ^ /: + 1 ,

(5.5d) l | V . ( a - a A ) | | ^ Cx \\ V . a|| rh\ 0 ^ r ^ k* ,
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(5.5e) \uh-Phu\

Z. CHEN

k + 2 j ^

/: = 1, in the case of k* = k ,

ifc = 0, 1, in the case of £* = jfc + 1

The postprocessing scheme can be easily defined here; using (5.5e), analogous superconvergence results can be
obtained. In the present case, we are able to obtain the superconvergence resuit (5.5e), which is of order
O(hk + 2 ) in both cases where k* — k and k* = k + 1, since the coefficient A dépends on X instead of u. The
vector variable has the error estimate of higher order, as shown in (5.5b).

We point out that attempts at using the usual mixed method based on the Brezzi-Douglas-Marini mixed finite
éléments ( n = 2 ) [4] and the Brezzi-Douglas-Durân-Fortin mixed finite éléments ( n = 3 ) [2] (or some of the
Chen-Douglas mixed finite éléments [8]) for (5.1) are not entirely successful, as shown in [7], because the error
équations couple the scalar variable u and the flux variable a. Consequently, the errors of the scalar influence those
of the flux. Hence, the error estimâtes for the flux variable are not optimal since these mixed spaces use
higher-order polynomials for this variable than for the scalar. However, the expanded mixed method découplés
the flux error équations from the scalar équations; as a conséquence, optimal error estimâtes can be obtained for
both the flux and scalar variables, as shown in (5.5).

6. IMPLEMENTATION AND NUMERICAL RESULTS

In this section we present numerical results for the model problem

(6.1a)
(6.1b)

- V . (fl(w) V M ) = / in&,
u = -g ondQ.

Before this, we need to consider implementation techniques for solving for the corresponding mixed method
solution ( ah, Àh, uh ) G Vh X Ah x Wh, where

(6.2a)
(6.2b)
(6.2c)

(a(uh)Xh,ti)-(ah,fi)=09

( V . ah9 w) = (ƒ, w) ,

, Vu e Vh ,

Vw G Wh .

A linearized version of (6.2) is constructed as follows. Starting from any (ah, Àh, uh) G Vh x Ah x Wh, we
construct the séquence (a^1, À™, w™) e Vh x Ah x Wh, by solving

~ ' ) A™ Ai ) - ( a™ AO = 0, V/i e Ah ,(6.3a)

(6.3b)

(6.3c) ( V . <r™ w) = (ƒ W ) , VweWh.

The ideas in [6] can be used to show that the séquence {(o^, A", u™)} converges to (ah, Àh, uh). Consequently,
since (6.3) is linear for each w, the implementation techniques discussed in [5] for the linear expanded mixed
method (e.g., alternating-direction itérative methods, hybridization methods, and preconditioned itérative
methods) can be applied here.

We now present two two-dimensional problems on the unit square with the Dirichlet boundary condition (5.1b)
or (6.1b). In the first example, the coefficient a{ u) in (6.1a) is taken tobe of the form a(u) = u. The true solution
is

u(x, y) =x2 sin (x) cos (y) ,

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



EXPANDES MIXED FINITE ELEMENT METHODS 519

with ƒ and g defined accordingly by (6.1). The expanded mixed formulation is discretized by means of the
lo west-order Brezzi-Douglas-Marini space [4] on rectangles as in (6.4). Namely, we solve a cell-centered finite
différence System for the scalar u over a uniform rectangular décomposition of Q, In Table 1 we show the errors
and convergence rates. Note that the orders of convergence in L2 and L°° are two in all cases. So, in fact, we have
a superconvergent resuit for the scalar u.

Table 1. — Convergence rates for the scalar in ex ample one.

l/h

5
10
20
40

L"-error( x 102)

1.550
0.470
0.120
0.029

LT -order

1.73
1.97
2.05

L~-error( x 102)

1.470
0.380
0.091
0.022

L°° -order

1.95
2.06
2.05

In the second example, the coefficient A{ Vu) in (5.1a) is defined by

A(v) = (vv 3 t ; 2 / 2 - s i n (2v2)/4), v = (vv v2) ,

g = 0 in (5.1b), and ƒ in (5.1a) is given by

Problem (5.1) has a unique solution [12] for such chosen functions. The Brezzi-Douglas-Marini space [4] of
lowest order on a uniform triangular décomposition of Q is exploited this time. Tables 2 and 3 show the errors
and convergence rates for the scalar and the flux variable, respectively. The convergence rate for the scalar is
O(h), while it is O (h2) for the flux. The numerical results in Tables 1, 2 and 3 confirm the theoretical results
from the previous sections.

Table 2. — Convergence rates for the scalar in example two.

l/h

5
10
20
40

L~-error( x 102)

3.57
1.89
0.99
0.52

LT -order

0.91
0.93
0.98

L2-error( x 102)

2.50
1.20
0.63
0.30

V° -order

0.99
1.02
1.09

Table 3. — Convergence rates for the flux in example two.

l/h

5
10
20
40

L°°-error( x 102)

1.870
0.540
0.140
0.032

L°° -order

1.79
1.94
2.12

L2-error( x 102)

1.540
0.430
0.110
0.027

L°° -order

1.84
1.97
2.03
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