@article{M2AN_1998__32_1_85_0, author = {Bakaev, N. Yu. and Larsson, S. and Thom\'ee, V.}, title = {Backward {Euler} type methods for parabolic integro-differential equations in {Banach} space}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {85--99}, publisher = {Elsevier}, volume = {32}, number = {1}, year = {1998}, mrnumber = {1619594}, zbl = {0905.65129}, language = {en}, url = {http://www.numdam.org/item/M2AN_1998__32_1_85_0/} }
TY - JOUR AU - Bakaev, N. Yu. AU - Larsson, S. AU - Thomée, V. TI - Backward Euler type methods for parabolic integro-differential equations in Banach space JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 85 EP - 99 VL - 32 IS - 1 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1998__32_1_85_0/ LA - en ID - M2AN_1998__32_1_85_0 ER -
%0 Journal Article %A Bakaev, N. Yu. %A Larsson, S. %A Thomée, V. %T Backward Euler type methods for parabolic integro-differential equations in Banach space %J ESAIM: Modélisation mathématique et analyse numérique %D 1998 %P 85-99 %V 32 %N 1 %I Elsevier %U http://www.numdam.org/item/M2AN_1998__32_1_85_0/ %G en %F M2AN_1998__32_1_85_0
Bakaev, N. Yu.; Larsson, S.; Thomée, V. Backward Euler type methods for parabolic integro-differential equations in Banach space. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 1, pp. 85-99. http://www.numdam.org/item/M2AN_1998__32_1_85_0/
[1] Resolvent estimates for elliptic finite element operators in one dimension, Math. Comp. 63 (1994), 121-140. | MR | Zbl
, and ,[2] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin and New York, 1983. | MR | Zbl
,[3] Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), 265-304. | MR | Zbl
, and ,[4] Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal. 23 (1986), 1052-1061. | MR | Zbl
and ,[5] Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp. 53 (1989). 121-139. | MR | Zbl
and ,[6] On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type, Math. Comp. 60 (1993), 133-166. | MR | Zbl
,