@article{M2AN_1997__31_7_891_0, author = {Kerdid, N.}, title = {Modeling the vibrations of a multi-rod structure}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {891--925}, publisher = {Elsevier}, volume = {31}, number = {7}, year = {1997}, mrnumber = {1489177}, zbl = {0895.73037}, language = {en}, url = {http://www.numdam.org/item/M2AN_1997__31_7_891_0/} }
Kerdid, N. Modeling the vibrations of a multi-rod structure. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 7, pp. 891-925. http://www.numdam.org/item/M2AN_1997__31_7_891_0/
[1] A justification of the one-dimensional linear model of elastic beam, Math. Meth. Appl. Sri., 8, p. 1-14. | MR | Zbl
and , 1986,[2] Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques, RAIRO, Analyse Numérique, 18,347-376. | Numdam | MR | Zbl
and , 1984,[3] Numerical analysis of junctions between plates, Comput. Methods Appl. Pech. Engrg., 74, 307-326. | MR | Zbl
, and , 1989,[4] Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal., 87,392-427. | MR | Zbl
and , 1989,[5] Plates and Junctions in Elastic Multi-Structures. An Asymptotic Analysis RMA 14, Masson, Paris. | MR | Zbl
, 1990,[6] A justification of two-dimensional linear plate model, J. Mécanique, 18,315-344. | MR | Zbl
and , 1979,[7] Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp, Meth. Appl. Mech. Eng., 26, 145-172. | MR | Zbl
and , 1981,[8] Junctions between three-dimensional and two-dimensional linearly elastic structures, J. Math. Pures Appl., 68, 261-295. | MR | Zbl
, and , 1989,[9] Asymptotic theory and analysis for displacement and stress distributions in nonlinear elastic straight slender rods, J. Elasticity, 19, 111-161. | MR | Zbl
, , and , 1988,[10] Sur l'analyse numérique de raccords de poutres et de plaques, Thèse de 3e cycle, Université Pierre et Marie Curie, 1987.
, 1987,[11] Stress distribution in anisotropic elastic composite beams, in: P.G. Ciarlet and E. Sanchez-Palencia, eds. Applications of Multiple Scalings in Mechanics, RMA 4, Masson, Paris, pp. 118-133. | MR | Zbl
, and , 1987,[12] Modélisation de la jonction entre une poutre et une plaque en élasticité linéarisée, RAIRO Analyse Numérique, 27, 77-105. | Numdam | MR | Zbl
, 1993,[13] Modeling of the junction between a plate and a rod in nonlinear elasticity, Asymptotic Anal., 7, 179-194. | MR | Zbl
, 1993,[14] Comportement asymptotique quand l'épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastrée, en élasticité linéaire, C. R. Acad. Sci. Paris, t. 316, Série I, 755-758. | MR | Zbl
, 1993,[15] Modélisation des vibrations d'une multi-structure forme de deux poutres, C. R. Acad. Sci. Paris, t. 321, Série I, 1641-1646. | MR | Zbl
, 1995,[16] Étude de problèmes de jonctions de poutres en élasticité linéaire, Thèse de Doctorat, Université Pierre et Marie Curie.
, 1995,[17] Modeling of folded plate, Comput. Mech,, 5, 401-416. | Zbl
, 1990,[18] Folded plates revisited, Comput. Mech, 5, 345-365. | Zbl
, 1989,[19] Modelling of the junction between two rods, J. Math. Pures Appl., 68,365-397. | MR | Zbl
, 1989,[20] Vibration of a folded plate, Modélisation Mathématique et Analyse Numérique, 24, 501-521. | Numdam | MR | Zbl
, 1990,[21] Elastodynamics for multiplate structures, in: H. Brezis and J. L. Lions eds, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XI, pp. 151-180. | MR | Zbl
, 1994,[22] Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, RMA 19, Masson, Paris. | MR | Zbl
, 1991,[23] Modeling and junction of an eigenvalue problem for a plate inserted in a three-dimensional support, Modélisation Mathématique et Analyse Numérique, to appear. | Numdam | Zbl
,[24] Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Anal., 6, 73-108. | MR | Zbl
, 1992,[25] Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, Paris. | MR | Zbl
and , 1983,[26] Couplage flexion-torsion-traction dans les poutres anisotropes à section hétérogène, C. R. Acad. Sci. Paris, t. 312, Série, 337-344. | MR | Zbl
and , 1991,[27] Derivation of generalized models for linear elastic beams by asymptotic expansion methods, in: P. G. Ciarlet and E. Sanchez-Palencia, eds. Applications of multiple Scalings in Mechanics, RMA 4, Masson, Paris, pp. 302-315. | MR | Zbl
and , 1987,[28] A derivation of generalized Saint Venant's torsion theory from three dimensional elasticity by asymptotic expansion methods, Applicable Analysis, 31, 129-148. | MR | Zbl
and , 1988,[29] A new approach of Timoshenko's beam theory by the asymptotic expansion method, Mathematical Modelling and Numerical Analysis, 24, 651-680. | Numdam | MR | Zbl
and , 1990,[30] Existence and characterisation of higher order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Anal., 2, 223-255. | MR | Zbl
and , 1989,[31] Mathematical Modeling of Rods, in: P. G. Ciarlet and J. L. Lions, eds, Handbook of Numerical Analysis, Vol. IV, North-Holland, Amsterdam, pp. 487-969. | MR | Zbl
and , 1995,