The p version of mixed finite element methods for parabolic problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 3, pp. 303-326.
@article{M2AN_1997__31_3_303_0,
     author = {Garcia, Sonia M. F. and Jensen, S{\o}ren},
     title = {The $p$ version of mixed finite element methods for parabolic problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {303--326},
     publisher = {Elsevier},
     volume = {31},
     number = {3},
     year = {1997},
     mrnumber = {1451345},
     zbl = {0876.65070},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1997__31_3_303_0/}
}
TY  - JOUR
AU  - Garcia, Sonia M. F.
AU  - Jensen, Søren
TI  - The $p$ version of mixed finite element methods for parabolic problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1997
SP  - 303
EP  - 326
VL  - 31
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/item/M2AN_1997__31_3_303_0/
LA  - en
ID  - M2AN_1997__31_3_303_0
ER  - 
%0 Journal Article
%A Garcia, Sonia M. F.
%A Jensen, Søren
%T The $p$ version of mixed finite element methods for parabolic problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1997
%P 303-326
%V 31
%N 3
%I Elsevier
%U http://www.numdam.org/item/M2AN_1997__31_3_303_0/
%G en
%F M2AN_1997__31_3_303_0
Garcia, Sonia M. F.; Jensen, Søren. The $p$ version of mixed finite element methods for parabolic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 3, pp. 303-326. http://www.numdam.org/item/M2AN_1997__31_3_303_0/

[1] I. Babuška, 1971, Error bounds for the finite element method, Numer. Math., 16,322-333. | MR | Zbl

[2] F. Brezzi, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO 8-R.2, 129-151. | Numdam | MR | Zbl

[3] M. R. Dorr, 1984, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21, 1180-1207. | MR | Zbl

[4] J. Jr. Douglas and J. E. Roberts, 1982, Mixed finite element methods for second order elliptic problems, Mat. Applic. Comp., 1, 91-103. | MR | Zbl

[5] J. Jr. Douglas and J. E. Roberts, 1985, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 39-52. | MR | Zbl

[6] S. M. F. Garcia, 1994, Improved Error Estimates for Nonlinear Parabolic Equations - Continuous Time Case, Numer. Methods in PDEs, 10, 129-147. | MR | Zbl

[7] S. Jensen, 1992, p-version of the mixed finite element method for Stokes-like problems, Comp. Meth. Appl. Mech. Eng., 101, 27-41. | MR | Zbl

[8] S. Jensen and M. Vogelius, 1990, Divergence stability in connection with the p version of the finite element method, RAIRO, Modélisation Math. Anal. Numér., 24-6, 737-764. | Numdam | MR | Zbl

[9] C. Johnson, Numerical solutions of partial differential equations by the finite element methods, Cambridge University Press, 1987. | MR

[10] C. Johnson and V. Thomée, 1981, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15, 41-78. | Numdam | MR | Zbl

[11] F. A. Mllner and M. Suri, 1992, Mixed Finite Element Methods for Quasilinear Second Order Elliptic Problems : the p-version. RAIRO, Modélisation Math. Anal. Numér., 24-7, 913-931. | Numdam | MR | Zbl

[12] A. Quarteroni, 1984, Some results of Bernstein and Jackson type for polynomial approximation in Lp spaces, Jap. J. Appl. Math., 1, 173-181. | MR | Zbl

[13] P.-A. Raviart and J. M. Thomas, 1977, A Mixed Finite Element Method for 2-nd Order Elliptic Equations, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, ed. I. Galligani and E. Magenes, Springer, 292-315. | MR | Zbl

[14] G. Sansone, Orthogonal Functions, Dover, Mineola, NY 1991 (orig. Interscience, 1959). | MR | Zbl

[15] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series vol. 30, Princeton University Press, NJ, 1970. | MR | Zbl

[16] M. Suri, 1990, On the stability and convergence of higher order mixed finite element methods for second order elliptic problems, Math. Comp., 54, 1-19. | MR | Zbl

[17] G. Szegö, Orthogonal Polynomials, AMS Colloq. Publ. 23, 1933. | Zbl