@article{M2AN_1997__31_2_213_0, author = {Ciarlet, P. Jr. and Zou, Jun}, title = {Finite element convergence for the {Darwin} model to {Maxwell's} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {213--249}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {1997}, mrnumber = {1437121}, zbl = {0887.65121}, language = {en}, url = {http://www.numdam.org/item/M2AN_1997__31_2_213_0/} }
TY - JOUR AU - Ciarlet, P. Jr. AU - Zou, Jun TI - Finite element convergence for the Darwin model to Maxwell's equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 213 EP - 249 VL - 31 IS - 2 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1997__31_2_213_0/ LA - en ID - M2AN_1997__31_2_213_0 ER -
%0 Journal Article %A Ciarlet, P. Jr. %A Zou, Jun %T Finite element convergence for the Darwin model to Maxwell's equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 213-249 %V 31 %N 2 %I Elsevier %U http://www.numdam.org/item/M2AN_1997__31_2_213_0/ %G en %F M2AN_1997__31_2_213_0
Ciarlet, P. Jr.; Zou, Jun. Finite element convergence for the Darwin model to Maxwell's equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 2, pp. 213-249. http://www.numdam.org/item/M2AN_1997__31_2_213_0/
[1] Sobolev spaces. Academic Press, New York, 1975. | MR | Zbl
, 1975,[2] A finite element formulation of the Darwin PIC model for use on unstructured grids J. Comput. Physics, 121(2), 281-297. | MR | Zbl
, and , 1995,[3] The finite element method with Lagrange multipliers Numer. Math, 20, 179-192. | MR | Zbl
, 1973,[4] Error estimates for the finite element method solution of the Stokes problem in the primitive variables Numer. Math., 33, 211-224. | MR | Zbl
and , 1979,[5] On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer., 129-151. | Numdam | MR | Zbl
, 1974,[6] Mixed and hybrid finite element methods. Springer-Verlag, Berlin. | MR | Zbl
and , 1991,[7] The finite element method for elliptic problems. North-Holland, Amsterdam. | MR | Zbl
, 1978,[8] An analysis of the Darwin model of approximation to Maxwell's equations Forum Math., 4, 13-44. | MR | Zbl
and , 1992,[9] Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin. | MR | Zbl
and , 1986,[10] Elliptic problems in nonsmooth domains. Pitman, Advanced Pubhshing Program, Boston. | MR | Zbl
, 1985,[11] Streamlined Darwin simulation of nonneutral plasmas. J. Comput. Phys., 73, 166-181. | MR | Zbl
and , 1987,[12] A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219-236. | Zbl
and , 1978,[13] Navier-Stokes equation using mixed interpolation. In Oden, editor, Finite element methods in flow problems. UAH Press.
and , 1974,[14] Problèmes aux limites non homogènes et applications. Dunod, Paris. | Zbl
and , 1968,[15] Mixed finite éléments in R3. Numer. Math., 35, 315-341. | MR | Zbl
, 1980,[16] Eléments finis mixtes incompressibles pour l'équation de Stokes dans R3. Numer. Math., 39, 97-112. | MR | Zbl
, 1982,[17] Particle code models in the non radiative limit. Methods Comput. Phys., 16, 367-388.
and , 1976,[18] Finite element approximation of the time-dependent Maxwell equations. Technical report, Ecole Polytechnique, France, GdR SPARCH #6.
, 1993,[19] Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer., 18(2), 175-182. | Numdam | MR | Zbl
, 1984,[20] A local compactness theorem for Maxwell's equations. Math. Meth. in the Appl. Sci., 2, 12-25. | MR | Zbl
, 1980,