@article{M2AN_1997__31_1_91_0, author = {Jiang, Xun and Nochetto, Ricardo H.}, title = {Optimal error estimates for semidiscrete phase relaxation models}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {91--120}, publisher = {Elsevier}, volume = {31}, number = {1}, year = {1997}, mrnumber = {1432853}, zbl = {0874.65069}, language = {en}, url = {http://www.numdam.org/item/M2AN_1997__31_1_91_0/} }
TY - JOUR AU - Jiang, Xun AU - Nochetto, Ricardo H. TI - Optimal error estimates for semidiscrete phase relaxation models JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 91 EP - 120 VL - 31 IS - 1 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1997__31_1_91_0/ LA - en ID - M2AN_1997__31_1_91_0 ER -
%0 Journal Article %A Jiang, Xun %A Nochetto, Ricardo H. %T Optimal error estimates for semidiscrete phase relaxation models %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 91-120 %V 31 %N 1 %I Elsevier %U http://www.numdam.org/item/M2AN_1997__31_1_91_0/ %G en %F M2AN_1997__31_1_91_0
Jiang, Xun; Nochetto, Ricardo H. Optimal error estimates for semidiscrete phase relaxation models. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 1, pp. 91-120. http://www.numdam.org/item/M2AN_1997__31_1_91_0/
[1] A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal, (to appear). | MR | Zbl
, and ,[2] Discretization of evolution inequalities, in Partial Differential Equations and the Calculus of Variations, F. Colombini, A. Marino, M. Modica and S. Spagnolo eds, Birkäuser, Boston, pp. 59-92. | MR | Zbl
, 1989,[3] Error estimates for equilibrium adsorption processes (to appear). | Zbl
and , Finite element approximation of transport of reactive solutes in porous media. Part 2 :[4] Contributions to Nonlinear Functional Analysis, E. Zarantonello ed., Academic Press, New York, pp. 101-156. | MR | Zbl
, 1971, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in[5] Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93,pp. 265-298. | MR | Zbl
and , 1971,[6] A P1-P1 finite element method for a phase relaxation model. Part I : Quasi-uniform mesh (to appear). | MR | Zbl
and ,[7] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, RAIRO Model. Math. Anal. Numer., 21, pp, 655-678. | Numdam | MR | Zbl
, and , 1987,[8] Error estimates for multidimensional singular parabolic problems, Japan J. Appl Math., 4, pp.111-138. | MR | Zbl
, 1987,[9] Finite element methods for parabolic free boundary problems, in Advances in Numerical Analysis, Vol I: Nonlinear Partial Differential Equations and Dynamical Systems, W. Light ed., 1990 Lancaster Summer School Proceedings, Oxford University Press, pp. 34-88. | MR | Zbl
, 1991,[10] Continuous and semidiscrete travelling waves for a phase relaxation model, European J. Appl. Math,, 5, pp. 177-199. | MR | Zbl
, and , 1994,[11] Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25, pp. 784-814. | MR | Zbl
and , 1988,[12] Error analysis for implicit approximations to solutions to Cauchy problems, SIAM J. Numer. Anal., 33, pp. 68-87. | MR | Zbl
, 1996,[13] Weak solutions and maximal regularity for abstract evolution inequalities (to appear). | MR | Zbl
,[14] Numerical aspects of parabolic free boundary and hysteresis problems, in Phase Transitions and Hysteresis Phenomena, A. Vismtin (ed.). Springer-Verlag, Berlin, pp. 213-284. | MR | Zbl
, 1994,[15] Numerical analysis of the multidimensional Stefan problem with supercooling and superheating, Boll Unione Mat. Ital. I-B, 7, pp. 795-814. | MR | Zbl
and , 1987,[16] Error estimates for a semi-explicit numerical scheme for Stefan-type problems, Numer. Math. 52, pp. 165-185. | MR | Zbl
and , 1988,[17] Stefan problem with phase relaxation, IMA J. Appl. Math., 34,p. 225-245. | MR | Zbl
, 1985,[18] Supercooling and superheating effects in phase transitions,IMA J. Appl. Math., 35, pp 233-256. | MR | Zbl
, 1985,