@article{M2AN_1997__31_1_57_0, author = {Pham Dinh Tao and Thai Quynh Phong and Horaud, Radu and Quan, Long}, title = {Stability of lagrangian duality for nonconvex quadratic programming. {Solution} methods and applications in computer vision}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {57--90}, publisher = {Elsevier}, volume = {31}, number = {1}, year = {1997}, mrnumber = {1432852}, zbl = {0878.65045}, language = {en}, url = {http://www.numdam.org/item/M2AN_1997__31_1_57_0/} }
TY - JOUR AU - Pham Dinh Tao AU - Thai Quynh Phong AU - Horaud, Radu AU - Quan, Long TI - Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 57 EP - 90 VL - 31 IS - 1 PB - Elsevier UR - http://www.numdam.org/item/M2AN_1997__31_1_57_0/ LA - en ID - M2AN_1997__31_1_57_0 ER -
%0 Journal Article %A Pham Dinh Tao %A Thai Quynh Phong %A Horaud, Radu %A Quan, Long %T Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 57-90 %V 31 %N 1 %I Elsevier %U http://www.numdam.org/item/M2AN_1997__31_1_57_0/ %G en %F M2AN_1997__31_1_57_0
Pham Dinh Tao; Thai Quynh Phong; Horaud, Radu; Quan, Long. Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 1, pp. 57-90. http://www.numdam.org/item/M2AN_1997__31_1_57_0/
[1] Analysis of plane and axisymmetric flows of incompressible fluids with the stream tube method : Numerical simulation by trust region algorithm, Inter. J. for Numer. Method in Fluids, 13, pp. 371-399. | MR | Zbl
, , and , 1991,[2] Numerical simulation of axisymmetric converging using stream tube and a trust region optimization algorithm, Engineering Optimization, 19, pp. 187-281.
, , and , 1992,[3] What can be seen in three dimensions with an uncalibrated stereo rig ? In G. Sandini, editor, Proccedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 563-578. Springer-Verlag, May. | MR
, 1992,[4] 3D Computer Vision, M.I.T. Press.
, 1992,[5] Camera Self-Calibration : Theory and Experiments, In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 321-334, Springer-Verlag, May. | MR
, and , 1992,[6] Camera calibration for 3D computer vision, In Proceedings of International Workshop on Machine Vision and Machine Intelligence, Tokyo, Japan.
and , 1987,[7] Practical methods of Optimization, John Wiley, New York. | MR | Zbl
, 1980,[8] Computing optimal constrained steps, SIAM J. Sci. Stat. Comput., 2, pp. 186-197. | MR | Zbl
, 1981,[9] Matrix Computations, North Oxford Academic, Oxford. | MR | Zbl
and , 1989,[10] Some properties of the E matrix en two-view motion estimation, IEEE Transactions on PAMI, 11(12), pp. 1310-1312, December.
and , 1989,[11] An algorithm for minimization using exact second derivatives. Tech. Rep. TP515, Atomic energy research etablishment (AERE), Harwell, England.
, 1973,[12] A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2. | MR | Zbl
, 1944,[13] Approximation et Optimisation, Hermann, Paris. | MR | Zbl
, 1972,[14] An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11. | MR | Zbl
, 1963,[15] The Levenberg-Marquardt algorithm : Implementation and theory. In G.A, Waston, editor, Lecture Notes in Mathematics 630, pp. 105-116. Springer-Verlag, Berlin-Heidelberg-New York. | MR | Zbl
, 1978,[16] Recent developments in algorithm and software for trust region methods. In A.Bachem, M. Grötschel and B.Korte, editors, Mathematical Proramming, The state of the art, pp. 258-287. Springer-Verlag, Berlin. | MR | Zbl
, 1983,[17] Computing a trust region step, SIAM J. Sci. Statist. Comput., 4, pp. 553-572. | MR | Zbl
and , 1981,[18] Relative 3D Reconstruction using multiples uncalibrated images, The International Journal of Robotics Research, (to appear).
, and ,[19] Convex Analysis, Princeton university Press, Princeton. | MR | Zbl
, 1970,[20] A family of trust region based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. on Numer. Anal., 22, pp. 47-67. | MR | Zbl
, and , 1985,[21] Object Pose from 2-D to 3-D Point and Line Correspondences, International Journal of Computer Visions (to appear).
, , and ,[22] Newton's method with a model trust region modification, SIAM J. Numer. Anal., 19(2), pp. 409-426, avril. | MR | Zbl
, 1982,[23] Méthodes numériques pour la minimisation d'une forme quadratique sur une boule euclidienne. Rapport de Recherche, Université Joseph Fourier, Grenoble.
, 1989,[24] Minimisation d'une forme quadratique sur une boule et une sphère euclidiennes. Stabilité de la dualité lagrangienne. Optimalité globale. Méthodes numériques. Rapport de Recherche, LMI, CNRS URA 1378, INSA-Rouen.
and , 1993,[25] Numerical methods for globally minimizing a quadratic form over euclidean ball an sphere (submitted).
, and ,[25] Training multi-layered neural network with a trust region based algorithm, Math. Modell. Numer. Anal., 24 (4), pp. 523-553. | Numdam | MR | Zbl
, and , 1990,