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MATHEMATICA!. MODELUNG AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMERIQUE

(Vol 31, n° 1, 1997, p 121 à 165)

SUPERHEAT1NG IN A SEMI-INFINITE FILM IN THE WEAK K LIMIT :
NUMERICAL RESULTS AND APPROXIMATE MODELS (*)

by Catherine BOLLEY (*) and Bernard HELFFER (2)

Abstract — The aim ofthis paper is to analyze numencally the different results concerning the
superheating field for the Ginzburg-Landau équations pubhshed by the physicists In the case
when the size of the film is large in companson with the inverse of the charactenstic constant
K of the matenal, we present an approximate model and analyze how it fits xvith prevtous
numencal results and with our new computations A ngorous but partial study in the weak K limit
is presented in our other paper [8]

Résumé —Le but de cet article est d'analyser par des méthodes numériques les différents
résultats publiés par les physiciens sur le champ de surchauffe dans les équations de Ginzburg-
Landau Lorsque la largeur du film est grande par rapport à la constante K caractéristique du
matériau, nous présentons un modèle approché et le comparons aux résultats numériques
précédents ainsi qu 'à nos propres calculs Une étude rigoureuse, mais partielle, est présentée
dans notre autre article [8] lorsque K tend vers 0

1. INTRODUCTION

Let us consider a superconducting film V which is subrmtted to an exterior

magnetic field H e. According to some parameters as the thickness of the film,

the intensity or the direction of the magnetic field H e or a charactenstic K of
the material, the sample can be in different states, in particular in the normal
state or in the superconducting state. The phase transition phenomena are
described by the Gmzburg-Landau theory which introduces a functional €
depending m particular on a complex wave function W and on the inner
magnetic potentiel A. The minima or local minima of e characterize the
different possible stable or metastable states. When the sample is a film and
the exterior magnetic field is parallel to the surface, a modelization of
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122 C. BOLLEY, B. HELFFER

Ginzburg-Landau [22] reduces the problem to a one dimensional problem
where the wave function is real (and denoted/) and where the functional is the
following :

\f ] (1.1)

with (J9A) e jed = H1a - d / 2 , d/2 [ ;R ) 2 . Here d is proportional to the
thickness of the film, h is proportional to the exterior magnetic field and K is
the Ginzburg-Landau parameter.

For a given positive h, the pairs (ƒ, A ) characterizing the different states of
the supereonducting films are the local and global minima of the functional
€d. In particular these minima when they exist (and this is indeed the case
when d is finite) are solutions in ] — dl% d/2 [ of the following so called
Ginzburg-Landau équations :

-K~2f+(- 1 + / + A2)/=0 in ]~d/2,d/2[ (1.2)

- A " + / A = 0 in ]-d/2,d/2[ (1.3)

where ƒ and A e H2( ] - d/2, d/2[ ; M) satisfy the boundary conditions :

f(±d/2) = Q and A\±d/2) = h. (1.4)

We get immediately the « normal solutions » ( ƒ, A ) = ( 0, hx + e ) with
e G R9 which are associated to the normal state. A solution (ƒ, A) such tha t /
is not identically 0 will be called a supereonducting solution ; it will be
associated to a stable (resp. metastable) supereonducting state if it is a
minimum (resp. local minimum) of ed.

The main purpose of this paper is the study of a critical field which is called
the superheating field. In order to give a définition, we first consider the set
Jfsh(d, K) of the positive h9s such that there exist supereonducting solutions.
We set :

DEFINITION 1.1 : The superheating field hsh(d, K) is defined as the supre-
mum of £f sh{d, K).

In this paper we essentially analyze the asymptotic problem of the super-
heating field as K tends to 0 when d is large in comparaison with l/?c This
leads us to consider a slightly different modelization which was first introdu-
ced by Ginzburg in [20] and usually called the supereonducting half-space.
This modelization restricts the problem to the research of symmetrie solutions
(f even and A odd) and considers a new normalization of the functional where
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SUPERHEATING IN A SEMI-INFINITE FILM 123

ed is replaced by f ê  - ( h2 - ^ ) d). We then restrict the problem to the
interval ] - d/2, 0[, and translate it to ]0, d/2[. We get formally, by taking
the limit d = <*>, the second functional :

e j / , A ; h) = j + [ i ( 1 - f f + «f 2/'2 + ƒ A2 + A'2] à + 2M(0),

defined for

( / , A ) e ^ = { a A ) | ( l ~ / ) E / / 1 ( ] 0 , - [ ) , A G H\-\Q,oo[)} - (1-5)

We remark that this choice of the functional space éliminâtes the normal
solutions because f=0 does not satisfy ( l - / ) e ^ ( l O ^ f ).

The local extrema of the functional (if they exist) are solutions of the
corresponding Ginzburg-Landau équations :

- K 2f"-f+f + A 2 / = 0 in ]0,oo[ (1.6)

/ ( 0 ) = 0 , lim f(x) = \ (1.7)

- A ' + Z A ^ O i n ]0,+ oo[ (1.8)

A'(0) = A, (1.9)

with

A e / /2(]0, + oo[), (l-f)e / /2(]0, + oo[).

Some of the boundary conditions were already introduced in the définition of
our variation al space but we prefer to write these conditions explicitely. We
can immediately transpose the preceding définition of the superheating field to
the superconducting half-space.

ït is a standard resuit that every solution ƒ of (1.6)-(1.9), like is a solution
ƒ of (1.2)-(1.4), satisfies \f\ ^ 1 on the interval where it is defined.

We study in Section 2 the superheating field for an approximate problem
which results from an improvement of an idea of P. G. de Gennes [19] and of
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124 C. BOLLEY, B. HELFFER

the Orsay group [26]. We get by a rigorous proof the existence of a fini te
superheating field for this new problem when K tends to 0, and give the
following asymptotic formulas for h*%p( K ) and for the corresponding initial
condition jfs

p
h=f(O):

hapP = K- i/2 2 - 3/4( ! + 5,2- 7/2 K: In ( /c" l ) + C?( K ) ) , (1.10)

We get by this study an approximate value for the superheating field, but we
have no control of the error between the approximate model and the initial
problem. These results have been announced in [3].

Section 3 gives some qualitative properties of the solutions of a family of
initial value problems associated to the System (1.6)-(L9) and classify the
solutions according to their asymptotic behavior. These problems will be used
in the numerical treatment of the last section.

Section 4 first analyzes the different results, formulas or numerical compu-
tations, concerning the superheating field appearing in the physical literature
and compare them to our own formula obtained in Section 2. The divergence
of a part of these results, essentially for small values of K, leads us to a more
careful numerical analysis of the problem in the half space. This is the object
of the second part of Section 4 where we use shooting methods on the initial
value problem associated to Problem (1.6)-(1.9) and a semi-implicite Runge-
Kutta method in order to compute solutions of the Ginzburg-Landau équa-
tions. We detail the numerical tests that we have used, but a theoretical
justification is missing.

Our numerical results agree of course for K small with the formula of P. G.
de Gennes and the Orsay Group ([19] and [26]) :

Urn hsh(K)Km = 2~m, (1.12)

but suggest an expansion for Kh1 in power of K and not in K In (K) as given
in (1.10). Actually they fit relatively well with the asymptotic formula given
by H. Parr in [27].

Rigorous results concerning this formula will be given in [8] and [10] but
the study of the approximate model has been important in the research of the
subsolutions constructed in [8] for the exact model.

In a previous version [9], we have also studied in the same spirit as in
Section 2 the case of a bounded interval [-d/2, d/2] when d large in
comparison with I/K. This part is not reproduced here.
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2. STUDY OF AN APPROXIMATE MODEL, WITH *c SMALL

In order to study the superheating field when the size of the interval is large
in comparison with \IK, we consider the problem in a semi-infinite interval
which plays the rôle of a simplified model.

Using a method of successive approximations, Ginzburg [21] has found that
for very small K, the superheating field satisfies :

where Hc is the critical thermodynamic field of the bulk material
(Hc — 2~ l ). Then, from a non rigorous discussion on approximate solutions
for the GL équations (1.6)-(L9), the Orsay group [26] and P. G. de Gennes
[19] deduced in 1966 the foliowing estimate for this critical field :

hsh = 2" m K m Hc ~ 0,8409 K m Hc. (2.1)

We will go back to this problem by analyzing carefully a more explicit
approximate problem. No rigorous proof exists measuring the error between
this approximate model and the initial problem, but we shall compare in a next
section the numerical results given in the literature and the results given by this
model. This model will appear to be good far from the superheating field
(which is not the case of the P. G. de Gennes's formula).

We keep the idea of P. G. de Gennes [19] and the Orsay group [26] who split
the GL équations in two simpler boundary value problems : one problem on
some interval ]0, D[ where ƒ is supposed to be constant (this fact means that
for small K the function ƒ is nearly constant (see [21] and [5] Section 4), and
a problem on ]£), + «>[ where A is chosen equal to 0 (this means that the
Meissner effect is satisfied). This leads us to restrict the initial variational
space Jt^ of the GL-functional to a smaller subset.

Let us first introducé the space Uj(fQ>D), defined for
( / 0 , D ) e ] - l , l ] x [ 0 , + oo[ by:

UJf»D) = {(ƒ, A) e JT_ ; / = / 0 o n ]0, D[, A = 0 on ]D, + - [ } ,

vol. 31, n° 1, 1997



126 C. BOLLEY, B. HELFFER

and let us consider the problem of minimization for the GL funetional over

PROPOSITION 2.1 : Let (fo,D,h) e ] - 1,1] x [0,<»[ x [05<«[, Then
the restriction to £/«(ƒ<), D ) of the functional (fA) —» €„,(ƒ, A ; h ) admits an
unique critical point in U^Xfo,D). This point is a minimum for e^ over

€0(/0, D ; h ) s inf €..(ƒ, A ; * ) , (2.2)
{f,A) G £/„(/0,i>)

given by

^ tanh
. (2.3)

Proo/:
Forevery (/,A) e £/.(ƒ<,,D)

6»(/, A ; A) = f ( i - 4 ) 2 + e!(A) +

where

The functional A -^ ex{A) is strictly convex on the domain
Ut = {A € H ^ ]0, Z>[ ) ; A(D) = 0} ; its minimum is reached for A such
that -A / / +j^A = 0 in ]0,D[ with A'(0) = h and A(D) = 0. We then
get :

The infimum over U1 oï e{ is then equal to :

for x € [ 0 , D ] . (2.4)

inf el(A) = - j - t anh( / 0 D) when /0 # O ,

inf e 1 (A)=- / i 2 D when /0 = O .
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SUPERHEATING IN A SEMI-INFINITE FILM 127

The functional ƒ —» e2(f) is defined on f/2 = {ƒ ; ( 1 — ƒ) G
Hl(]D,+ oo[), f(D)=fö}. lts critical points satisfy

- * 2r~ ƒ + ƒ = 0 on ]Df + oo[ , (2.5)

Let us prove the existence and uniqueness of a solution for (2.5).
Multiplying the équation by ƒ' and integrating gives the conservation of

energy :

K 2f(xf +f{xf - \f{xf = Const.,

where the constant is computed, using the boundary condition at 4- », as equal
to i . We get

The function f is positive for large x because |f\ s£ 1 and ƒ tends to 1 as
x —» + oo. The only points where f can vanish are points such that
/ (x ) = ± l , but if such points exist ƒ = ± 1 on ]D,oo[. Therefore, the
condition f(D)=f0 implies that f>0 on ]£>, + «>[ unless when
/0 = 1. In any case, we have consequently

f(x) = + ̂ (l-f(x)2). (2.6)

We get by a new intégration, when fQ € ] - 1, 1[

/ (x) = tanh ( -j= ( x - x 0 ) \ forxe [A + oof, (2.7)

with

(2.8)

When fo= 1, then ƒ= 1.
Therefore, for /0 G ] - 1, + 1]

inf e2(f) = K
fe U2 JDf G ,

vol. 31, n° 1, 1997



128 C BOLLEY, B HELFFER

The relations (2.4) and (2.7)-(2.8) détermine a unique element in
UJJ& D). We get Proposition 2.1.

The research of a pair (ƒ ,À ) e Jf7^ such that €oo(ƒ, A ;h) is locally
minimal, is then replaced, for the approximate problem, by the research of
D =s 0 and / o e ] - 1, 1] s.t. zo(fo,D;h) is locally minimal (3).

Remark 2.2 : For 0 < / 0 < l , we have

e o ( - / o , D ; ft) = co(/ot D ; ft) + 2(3 -ƒ*)ƒ„ ^ €0(/0, D ; ft) . (2.9)

Therefore» when we restrict the study to the/o ' s such that / 0 e [0, 1], we
perhaps eliminate local minima but no global minima.

In order to show, in the case when 0 < h < ~j=, the existence of a
minimum, we shall prove the foliowing proposition :

PROPOSITION 2.3 : For ö <h < -^=, the functional e0 is semibounded on

the set -V of the pairs (fo,D) s.t fo& ] - 1, 1[ and D ? 0 , and the
minimum is reached for a pair (fQi D ) such that

f0 & max { Vl-V2~fc ;/0} , (2.10)

where fö ~ 0.78 is the solution in ]0, 1[ of the équation

10 4

Proof:
We first prove the semiboundedness.
The relation (2.9) reduces the study to pairs (fo,D) such that fQ ^ 0.
Now, we have from (23) the foliowing lower bound for €0(/0, D ; h) :

Now, for h < -j=, we can find p > 0, p ^ 1 such that
( i _ p2 f _ 2 h2 > 0 and then :

V/0€ [O,/*] and DZO:eo(fOiD;h)^j^(2-3p). (2.11)

(3) Another approach was used m an earlier version distributed as a preprint of ECN [9] We
follow hère a suggestion of M Crouzeix
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For f0 e [p, 1], coming back to (2.3), we write

o D ; A ) ^ - ^ + ^ ( 2 - 3 / o + ^ ) , (2.12)

which gives

€ 0 ( / 0 , D ; / O > - y + j | ( - l + / > 3 ) , (2-13)

and the first part of the proposition.
Let us improve this resuit.

Proof of (2.10) : Let

ao(/o,/O= M eo(fQ,D',h). (2.14)

If 1 -fl 2* V2&» the minimum for e0 with respect to D is reached for
D = 0. Then

When 1 - 4 < V2 /z, we get |/0| > Vi - V2 ft, then /0 ^ 0. A critical value

for e0 with respect to D is given by the vanishing of ^ (f0, D ,h). This gives

Now, for every D ^ 0 :

(/0,D ; A) = 2ft2/o- f 1 - tanh2 (/0D) j . tanh (/0D) ,^ 2

which implies that Do given by

tanh (D0\fQ\ ) = y 1 - ° 2 ^ P (2.15)

leads to a minimum for D -» eo(/o, D ; h). We get for |/0| > Vl - V2h :

vol. 31, n° 1, 1997



130 C BOLLEY, B HELFFER

with Do given by (2 15)
We have in particular when f0 = 1 — e

ao(l-e,h)=-h2(l+e) + &h(e
2\\n e| ) (2 16)

This shows that the minimum of f0 —> ao(/0, h ) is stnctly iower than
- h2, and consequently reached for an f0 =f0 such that f0 > 1 - V2 h and
/0 > 0 At this minimum, using that tanh x ^ x, we have

9 tanh(£>0/0) _ 9 ^2 tanh (Dn/ft) 9

0 ( / ^ ) ^ 2 i o ^ d y j ) ^ ^ ^ / 2

We get

Therefore we have the mequality

By studymg the variation of f0 —> /J 0 / 3 - 2 /^ / 3 + 1, we observe that it has
a unique zero f0 in ]0, 1[ and we consequently get

with 0 7 8 < / 0 < 0 7 9
We shall show in [8] that the GL functional e^ is also semibounded in

J f for h < A= See also Remark 7 3 in [8]
V2

We are now interested in the case when h > —F We have m that case
V2

set

PROPOSITION 2 4 For h > -j=, the functional e0 is not semibounded on the
iT 2
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3
Proof For every f0 e [0, 1], usmg the mequality tanh (x ) ^ x - TT for

x ^ 0» we have

But for any h > ~y=, there exists a constant a such that

f l - 2 / î 2 + ^ a 2 / î 2 J < 0 Consequently, if (/^n)) is a séquence tendmg
to 0 when n tends to + » , and if Dn = af/o

n\ then eo(/*n), Dn,h) tends to
— oo as the first term when n tends to + <*> This shows that e0 is not
semibounded

Proposition 2 4 has an important conséquence for the GL functional e^ The
functional €0 has actually been mtrodueed by restriction of the GL functional
e^ to a smaller set Therefore, it results immediately from Proposition 2 4 the
followmg corollary

COROLLARY 2 5 If h > —P=, the GL functional €w is not semibounded

However, as an immédiate conséquence of (2 13), we have the followmg
resuit for €0

PROPOSITION 2 6 For every h > 0 and every p > 0, the functional e0 is
semibounded on the subset "Vp of the (/0, D ) s t fo^p and D ^ 0

A conséquence of Proposition 2 4 is the non existence of any global

minimum for the two functionals for h > - = , and we can only hope for local

minima for €0

Remark 2 7 (4) For ^= < * ^ yj 1 - ( ^ ) 2 + | ^ | , the function

/ 0 —» ao(/o, /Î ) defined as m (2 14) admits a local minimum which is reached

by an fo=f?az ]i,l[
Indeed, usmg once agam that tanh x ^ x for x 5= 0

16

(4) This remark was suggested to us by M Crouzeix
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/ 7 \ -
This gives the result, using (2.16). We note that 1 - ( jz f ~0.71.

Moreover, because

lim aù(fQih) = ~oo (2.18)

when h > -T=, we get the existence of a local maximum for
2

We shall now show the following result :

PROPOSITION 2.8 : Let 3^{
SI\K) be the set of the h>Q such that there

exists a local minimum for the functional eQ. Then} there exists K0 > 0 such
that, for 0<K^KO, the set ^{

SI\K) is an interval (0, hafk
P] where

h^p and the corresponding f0, denoted by / Q ^ , satisfy :

happ ^ K- 1/2 T 3/4( j _ 5 T 7/2

fvt>sh = T m{ 1 + T 7/2 K In K + &{K) ) . (2.20)

Proof:

Step 1 : The Euler équations
The critical points of the functional are given by the vanishing of the

derivatives de0 fdf0 and de0 IdD. Let us write de0 /df0 :

— 2 £)ƒ f 1 — / ) — f 1 — f ) (2 21)

As for the constant model considered in [5], the condition d€ö/df0 = 0 gives

(2.22)
tanh Oo D ) - D/o( 1 - tanh2 (/0 D ) ) '

On the other hand

/ d € 0 \ 2 / 2 \ 1 2 2

( ^ j ( / o^^ ) = -ni-tanh2(/oD)) + 2-1(l-4)2; (2.23)
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so that the équation de0 IdD = 0 gives the following relation :

h2 = i ( 1 - f0 f cosh2 (f0 D ) . (2.24)

Remark 2.9 : The relation (2.24) can also be understood as a conséquence
of the conservation law for the GL system. We recall that the GL system can
be rewritten as an hamiltonian system which admits the following conserva-
tion law, for any xe [0,+ <=<>[,

K-2f2(x)+A'2(x)-±(\-f2(x))2~A2(x)f(x) = Con$L, (2.25)

where the constant is proved to be 0 by taking the limit x —» + <x>.
We get, in particular, when x = 0

fc2 = ± ( l - / ( 0 ) 2 ) 2 + / ( 0 ) 2 A ( 0 ) 2 . (2.26)

At the critical value for e^ the function A satisfies
/i tanh(/0D)

A(0) = —f-2- and then (2.26) allows us to fmd again (2.24).

Remark 2.10 : This conservation law was used in the argument of the Orsay
group but appears unclear in the details.

Neglecting 2 Df0 in (2.22) in comparison with V2 K~ l and using the
approximation tanh (fQD) » 1, we get as an approximation of this équation
the following formula

which is the formula given in [19], but these approximations are only justified
for fQ D large. Our dérivation seems more natural.

Step 2 : The asymptotic behavior for h as fonction of f0 and D
The élimination of h between (2.22) and (2.24) gives us a relation between

D and/0 :

( 1 - 4 ) cosh Oô D) = ^ ? ^ T (2.27)
2 tanh (f0D) - Dfo( 1 - tanh2 (fQD) )

Let us introducé new parameters

u^fQ and y = Df0.
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We can then rewrite (2.27) as

U(23/2K~
 1 + 4 ) 0 - ( 1 - M) (sinhycoshy-y) = 0. (2.28)

Then

sinh y cosh y — y
u = —~i 7- (2.29)

sinh y cosh y -f ( 3 y + 23/2 K~ l )

or

1 " «00 = 1 - — ; :^—77- (2-30)

We can then rewrite h as function of y :

h = ±(l-u)coshy, (2.31)

with u = u(y) given by (2.30). We then get :

u T o 3 / 2 - 1

where A = 2 /c
Let us consider h(y) for y small. We get :

^ ( ^ ) (2.33)

Now, for large y,

h(y) = 4 V2 y exp - y + (9(zxp - y) .

When y tends to 0, h(y) tends to l/VY, and when y tends to + ©o, h(y) tends
to 0. Moreover, the function y —> h(y) is an increasing function of y for
y > 0 small and has a local minimum at y = 0. We deduce from these
computations that there exists at least one strictly positive y such that
dh/dy = 0 and /z is maximal. Moreover, this maximum is larger than
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Foliowing the intuition of the Orsay group [26], we calculate y and h such
that this relation is satisfied ; we dénote by f (y) and g (y) the numerator and
the denominator of y -» h( y ) in (2.32) :

Ây) = V2(4y + X) (exp y + exp - y)

g(y) — 12y + 4 A + exp 2y - exp - 2y .

We write that :

dh/dy = 0 if and only if fg =fg',

with

( 4 1 + exp 2y+ \2y - exp - 2y )

x ( A exp y + 4y exp y - X exp - y + 4 exp y - 4y exp - y + 4 exp - y )

2 ' 1 / 2 / (y)0 ' (y) =

( A exp y + 4y exp y + A exp - y + 4y exp - y )

x ( 2 exp 2y + 12 + 2 exp - 2y ) .

The équation f g -fg'=O can be considered as a second order équation in
X. We have :

2" 1/2(/(y) 0(30 -

with

a(;y) = 4(exp;y-exp- ;y)

^( v ) = 4( 4y exp y + 4 exp y - Ay exp - y H- 4 exp - y )

+ ( exp y - exp - y ) ( exp 2y + \2y - exp — 2y )

- (exp y + exp - y) (2 exp 2y + 12 + 2 exp - 2y)

y(y) = (exp 2y + 12y - exp - 2y)

x ( 4y exp y + 4 exp y - 4y exp - y + 4 exp - y )

- 4y( exp y + exp - y ) ( 2 exp 2y + 12 -h 2 exp - 2y ) .

We then observe that the coefficient a(y) of A2 is equal to 8 V2 sinh y which
is strictly positive for y > 0 and that the coefficient y(y) behaves like
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- 4 V2 y exp 3 y for large y Therefore we obtam the existence for y large
positive of a unique root X(y ) > 0 of the second order équation We shall now
show that îts asymptotic behavior is that of exp 2y /4, and ît will then be easy
to prove that conversely for X large positive there exists a unique positive y
such that h'(y)=O

In order to compute the positive root, denoted by X+(y), we use that

we then take the asymptotic for large y and, in a second step, deduce an
asymptotic formula for y as a function of À

We have

a(y)~ l = 4" \cxp-y) (1 + exp-2}>) + 0(exp - 3y)

p(y) = - exp 3y ( 1 - 28y exp - 2y + ©(exp - 2y) )

y(y ) = - Ay exp 3y ( 1 - y~ l - 12v exp - 2y + & ( exp - 2y ) )

Therefore the discriminant satisfies for large y

A(y ) = exp 6y ( 1 + 8;y exp - 2y + 0( exp - 2y ) )

This gives us the followmg formula for A +

4~ 1 .exp2v(l - 12yexp-23; + Ê?(exp-2j)) (2 34)

We get that for À large enough there exists a unique y = ysh givmg the
maximum of y —> h(y), and this ysh has the following expansion for large
À

l n (A) + l n ( 2 ) + | ^ + © ( ) (2 35)

Now when -^= < /Î < h(ysh)9 there exists two values ^ „ C ^ ) and

Of y S U C h

and
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Using (2.31) we can compute the value of h corresponding to the critical
ysh. We first have from (2.35) :

exp 2ysh = 4 A + 6 In ( A) + 0 ( 1 ) .

Then

1 _ u(ysh) = T l + T 2 X' l In ( A) + &{ A" l ) , (2.36)

so that, using (2.31)

h(ysh) = 2' 3/2 V I . ( 1+ 5 . 2" 2 A" l In ( A) + 0( A~ ' ) ) .

Then, since A = 23/2/c~\ we find

yjA = T l In («:" l ) + 7 . 2" 2 In 2 + &(K In (K:" ! ) ) , (2.37)

u{ysh) = 2~\\ +2~5/2K\r\K + &(K)) . (2.38)

Then we get as a possible candidate for an approximate superheating field :

KhP = h(ySh ) = K~ m T 3/4( 1 - 5 . 2" 7/2 K In K + ©( K ) ) (2.39)

The corresponding fQ and D satisfy :

and

fZ = "1/2( y,H ) = 2" 1/2( 1 + 2" 7/2
 K In ( K ) + ©( K ) ) , (2.40)

sh = ̂  = 2" m In (K- ' ) + 7 . 2 - 3/2 In 2 + 0 ( K . (In K)2) . (2.41)

Remark 2Al : We have not investigated two points. We have not verified
that the constructed solution (ymsx(h), u(ymax(h))) for given h corresponds
effectively to a local minimum of the functional, while the other solution
(^min(^)' "(^mxnC1) ) ) corresponds to a saddle point. See however Re-
mark 2.7. Another crucial point will be to prove an estimate between the
« approximate » superheating field and the real one. It will be very convenient
to prove an estimate like :

But we are unable to prove for the moment the weaker :

hsh lhfh
p = 1 + o( 1 ) as K ~> 0 .
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We shall discus s in Section 3 numerical results on this problem and we shall
see that, if the first term of the expansion (2.39) is confirmed, it is not the case
for the second.

Now, using very accurate computations of subsolutions for the GL équa-
tions, we show in [8] that there exists a constant Co such that :

which gives a nearly optimal lower bound of the superheating field if we
compare the formulas given by R G. de Gennes [19] and H. Parr [27], and
Section 3.

About the branching point at I f0 = 0, h = —= j.

Another interesting question concerning the solutions ( ƒ, A ) of the GL
équations, is the asymptotic behavior for h and A( 0 ) as f0 tends to 0. We have

LEMMA 2.12 : Let (ƒ, A) be a solution of the approximate problem such
that /(O) =f0 and A'(0) = h9 thent as f0 tends to 0,

(2.42)

Proof: We come back to the variables u = f\ and y~f0D. Using (2.29)
and the inequality sinh y cosh y - y > 0 for y > 0, we get that

f0 tends to 0 if and only if y =f0D tends to 0 .

The équation (2.29) gives for small f0 :

or

so that (a) results immediately from (2.33).
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Now,

which gives (b).
The expansion (c) results from the expression (2.3) of €0.
These asymptotics will also be compared to numerical results in the last

section.

3. QUALITATIVE PROPERTIES OF THE INITIAL VALUE PROBLEM

The équations which give the superheating field for the half-space model are
the GL équations (1.6)-(1.9), but, in order to avoid the numerical difflculties
due to the conditions at infinity and to the very fast increase of A while ƒ
slowly varies, we shall instead treat a family of initial value problems
associated to the GL équations. We try in this section to give some qualitative
properties of this problem which will explain our choice in the numerical tests
of the last section.

The system can be written as Y'= F(Y,x)9 with

7= (ƒ,ƒ', A, A') ,

F(F,x) = ( / , ? c 2 ( - / + / + A 2 / ) > A / , / A ) * e ]0, r [ ,

for T > 0. We now give the initial conditions at x = 0. Two natural
conditions ƒ'( 0 ) = 0 and A '( 0 ) = h are given by our problem. We add the
two unknowns ƒ( 0 ) = fQ and A( 0 ) = Ao.

We get

f=g (3.i)

9f=K[-f+f+A2f\ (3.2)

A'=C (3.3)

C'=fA (3.4)

with

/ (0 )= / 0 , 0(0) = 0, A(0)=Ao> C(0) = /i, (3.5)
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where f g, A, C are in Cl( ]0, + T[ ), f0 and Ao e R. In the following, we
shall dénote YQ each initial condition of the form (/0, 0, Ao, fo).

Because F is a C1 function on U4> we know by standard results the
existence, for every Yo e IR4, of a unique maximal solution
( y ; 7max = [0, Tmax[ ) satisfying the differential System (3.1>(3.5) on
]0, Tmax[ and the initial condition YQ.

We are looking for solutions of the GL équations (1.6)-(1.9) on
]0, + oo[, we have then to study the existence of Yo such that
7*.™ = + oo and such that

max

A e tf2(]0,oo[), ( W ) e H2(]0,~[) (3.6)

then, in particular

lim /(*) = 1, lim A(*) = 0. (3.7)

We have akeady recalled that a solution of the GL équations is such that
\f(x)\ ^ 1 for x e [0, + oo[. Let us give other propetties of these solutions.
The proofs of these results can be found in [5], [8] or [30].

PROPOSITION 3.1 : Let (ƒ, A) be a solution of (L6)-(L9), then :
a) The function A is strictly increasing on [0, + » [ , and we have :

0**A'(x)**h. (3.8)

b) If f is positive on [0,<*>[, then f is strictly increasing on ]0,°°[.
Moreover, we recall (see Remark 2,10) that, when such a global solution
exists, (ƒ, g, A, C) belongs to an hypersurface VQ in [R4 given (cf. (2.25)) by :

Therefore we shall suppose in the following (and in our numerical computa-
tions of Subsection 4.2) that the initial condition Yo belongs to Vo, and
consequently the initial conditions satisfy :

(a) / (0) = 0; A\0) = h (3.9)

(b) h2 = ±(l-f0)
2+f0A

2
0.

We are looking for solutions such that ƒ is positive and A négative, so that we
shall suppose that

/ o e [0,1] and Ao ^ 0 ;
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but, because the cases f0 — 0, f0 = 1 and Ao = 0 are simpler limit cases, we
shall in gênerai assume that

/0<E ]0, 1[ and A 0 < 0 . (3.10)

Furthermore, we shall restrict our study to the solutions of (3.1)-(3.5) such that
ƒ is nonnegative, although some results can be extended to some ƒ which
changes of sign in /max.

Let us now partially study the solutions of the initial value problem
(3.1)-(3.5). We first consider the stationary solutions.

Stationary solutions of (3.1)-(3,5)
We have

PROPOSITION 3.2 : The only stationary solution of (3J)-(3J) satisjying
(3.9), foe [0, 1] and Ao ^ 0, is the solution (1, 0, 0» 0) ; it is an unstable
solution,

Proof: Stationary solutions are constant solutions such that Y' ~ 0. We get

( / = 0 , A = m = Const.) or (A = 0 , / = ± l ) . (3.11)

But, there are no 4-uplet (ƒ, ƒ, A, A') = (0, 0, m, 0) satisfying (3.9) (and
consequently the conservation law (2.25)) ; therefore the only stationary
solution with f0 2* 0 is (ƒ,ƒ', A, A') = ( 1, 0, 0, 0) .

In order to show the instability of this solution, we have to study the
linearized problem around the stationary solution (1 ,0 ,0 ,0 ) , that is the
System

V ' = D F F ( ( l , 0 , 0 , 0 ) ) V,

where DFY(( 1 ,0,0,0)) has A ± = ± l , / i ± =±V2?c as eigenvalues. We
then get a 2-dimensional stable manifold whose tangent space at
(1 ,0 ,0 ,0 ) is spanned by ( 1, - V5ie,0, O) and (0 ,0 , l , - V 5 ) and a
2-dimensional unstable manifold whose tangent space is spanned by
( l , + V 2 K , 0 , O) and (O, 0 , 1 , + V f ) . The instability of the stationary
solution (1 , 0, 0, 0) could explain some difficulties in the computation of a
solution of (3.1M3.5) s.t (3.6) and (3.9) are satisfied.

Variations of ƒ and A

Let us write some partial results about the variations of the solutions ƒ and
A of the initial value problem (3.1)-(3.5) when the conditions (3.9) and (3.10)
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are satisfied. Under some additional assumptions, as the positivity of ƒ we try
to analyze the different behaviors of the solution, and make more précise the
classical result that a trajectory is either unbounded or converges towards a
stationary solution.

The solutions of the GL équations are bounded solutions which are defined
on ]0, + oo[ ; this is not the case for most of the solutions of the initial value
problem. The two Lemmas 3.4 and 3.5 give, in particular, that /max is finite or
infinité, according only to the boundedness to ƒ But, let us first write a useful
lemma

LEMMA 3.3 : Let (ƒ, ƒ', A, A'; 7max) be a maximal solution of (3.1)-(3.5)
satisfying (3.9)-(3.10).

ii) If there exists xx e ]0, Tmdx[ such that f(x}) = 1, then f is strictly
increasing and convex on ]xv 7"max[.

ii) If there exists x2 e ]0, Tmax[ such that A(x2) =0 , then A is strictly
increasing and convex on ]x2, Tmax[.

Proof: For i), let xx be the smallest xl s.t. f(xx ) = 1, then, because ƒ is not
a constant function and x e ]0, + °o[ —» ( l, 0, 0, 0) is a stationary solution,
the Cauchy-Lipschitz Theorem implies that f(xl)>0. The équation
f\x) = K\- 1 + ƒ ( * ) + A 2 ( x ) ) / ( x ) gives that ƒ"<>) ̂  0 for
x e ]jcp Tnua[9 and then f(x) ^ f(xx ) > 0 on the same interval. Therefore,
ƒ is strictly increasing on ]xv Tmax[.

The proof of ii) is analogous with the use of the équation Aff = f A.

We can show

LEMMA 3.4: Let (ƒ,ƒ*, A, A'; 7max) be a maximal solution of (3J)-(3.5)
satisfying (3.9)-(3J0).

i) If both f and A are bounded on /max, then f and A' are also bounded and

ii) If f is bounded on 7max, then Tmax = + <».

Proof: For i), bounds for ƒ' and A 'result immediately from the conservation
law given by (2.25) or

K2f\x)+A'\x)=A\x)f(x)+\(l-f(x))\ (3.12)

Now, if 7 ^ was finite, a classical theorem says that
| / ( * ) | + l f ( * ) | + |A(x) | + \A\x)\ tends to + oo as x ~4 Tmax. This gives
a contradiction and then the first part of the lemma.

In order to prove the second part ii), we shall suppose that 7max is finite and
get a contradiction.
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If ƒ is bounded, the équations (3.3) and (3.4) give that the pair
X~(A,A') is a solution of a linear équation which can be written as
X\x) = M(x)X(x) where M is a bounded matrix on [0, Fmax[. We get,
using the norm 22 in IR4 and the eorresponding matrix norm

\\X\x)\\2^ | |M(x) | | 2 . | |X(*) | | 2 « C||X(*)||2 for* e Im!a ,

(where C is a constant). Then, using a classical resuit about the derivative of
the function r(x) = ||X(jt)||2 for x e 7max and integrating, we get :

\\X{x)\\2* | |X(0)| |2 .expCx f o r x € / m a x .

Therefore, the assumption that Tmax is finite gives that A is bounded on
7max. But the part i) of the lemma says that Fmax = + 00 as soon as ƒ and A
are both bounded ; we get a contradiction and then Tmm = + « .

LEMMA 3.5 : Let (ƒ,ƒ', A,A';/m a x) be a maximal solution of (3.1)-(3.5)
satisfying (3.9)~(3.10). If there exists xx e 7max such that f(xx) = 1, then
Tmax is finite and ƒ tends to + <*> as x tends to TmsK,

Proof: Let us first show that Traax is finite.
By multiplicating by / and integrating the équations (3.1) and (3.2), we get

for 0 ^ x < y < T m â x

A2(t)f(t)f(t)dt. (3.13)

Using Lemma 3.3 (i), we get that f(x)f(x) 3* 0 for x e [xv Tmax[ with
/ ( ^ ) > 0 . Consequently» for x e }xv Tmax[

1)Z + C, (3.14)

where

\ _ i v - fL( v ^ >» A fx 1 *^

Because/'is positive, we get, for x e ]xv Tmax[,
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then for x e ]* , , Jmax[

K

and for y < Tw

ƒ(*) - 1
ƒ(*) +

(3.16)

f (y) > 1 for y e ~\xv TmaK[ and consequently the left hand side is
négative. We get that Tmax is finite.

The end of the proof of Lemma 3.5 is easy ; Lemma 3.4 (ii) implies that ƒ
is unbounded because 7max is finite, and Lemma 3.3(i) gives that ƒ is strictly
increasing on ]xv Tmax[ ; therefore f(x) tends to + °° as x tends to jTmax. We
get in particular that the trajectory of the solution (ftf9A,A';ImaK) is un-
bounded.

Remark 3.6 ; The inequality (3.16) gives an interesting result for/(jc) as
x —> rmax when the assumptions of Lemma 3.5 are satisfled.

If we take the limit y -^ Tmax in (3.16), we get for xx < x < Tmax :

then, for every e > 0, there exists rjx > 0 such that for

If we add, to the hypothesis of Lemma 3.5, the assumption that A is bounded
on 7max, we get for ƒ an analogous lower bound. This is the object of the
following lemma.

LEMMA 3.7: Let (ƒ,ƒ' A, A'; 7max) be a maximal solution of (3.1)-(3.5)
satisfying (3.9)-(3J0) and let us suppose that A is bounded on /max. If there
exists x{ e 7max such that f{x{ ) = 1 then :

i) for every € > 0, there exists r\ > 0 such that for

x)-.

H) both A and A ' tend to 0 as x —» T and

, with a0 = CK * + (9( 1 ) .
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Proof : The results of Lemma 3.5 and of Remark 3.6 remain true ; we shall
get i) using an analogous proof and the conservation law (2.25).

Proof of i).
Let us first give an equivalent for ƒ as x —» Tmax.
Let M be a constant s.t. |A(x)| ^ M for x e 7max ; we can easily suppose

that M > 2, then, using the conservation law (2.25), we get :

=£ ± ( ƒ ( * ) + M 2 - l ) 2 .

Therefore, using that M> 1 and / ' i s positive for x>xv we get:

0 < K- lf(x) ^ T m(f(x) + M2 - 1 ) ;

and then, by integrating over [x, y], with xl < x < y < Tmax :

M 2 - I / \VM2-I

If we take the limit y —> Tmax, we get for xx < x < Tmax :

f(x)> V M 2 - l t a n ( | - 2 - 1 / 2 , c V M 2 - l ( r m a x - x ) ) ;

then, for every e > 0, there exists ?/2 > 0 such that for

( 7 m a x - * ) / ( * ) > O - O 2 1 / 2 K - 1 . (3.18)

Using (3.17) and tj = inf {riv t}2}, we get i) ; and in particular :

ii) Let us show that A tends to 0 as x —> rmax.
By integrating the équation -A"+fzA = 0 with the initial condition

A'(0)=h over [0,x] with XG ]0, ^max[, we get:

't; (3.19)

with A négative and A'positive on [0, Tmax[ (A is increasing) ; moreover
A', positive and decreasing on 7max admits a non-negative limit / as
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r*
Now, it results from (3.18) that f(x) ^ T _ when x -> Jmax ; there-

fore, the intégral in (3.19) is only convergent, as x -» rmax, when A tends to
m = 0 ; using that, in the opposite case (that is m < 0 ) A'cannot have a limit
as je —> Tmgx9 we get a contradiction and then that m = 0.

For A' integrating by parts

A(0)
J 0

we get that the limit of A'as x —> Tmax is also / = 0.
The behavior of A as * —» Tmax follows from Standard technics on ODE by

reducting to a Ricatti équation.
The next lemma gives informations about the local extrema for A when ƒ is

supposed to be non-negative on 7max ; this will help us to classify the solutions
of the initial value problem with a view to our numerical computations. We
first remark that if f0 > 0, thanks to the Cauchy-Lipschitz Theorem, the
assumption ƒ ^ 0 on lmax implies that ƒ is strictly positive on this interval.

LEMMA 3.8: Let ifJ\A,Af'Jm2OL) be a maximal solution of (3J)-(3.5)
satisjying (3.9)-(3.10). Iffis non-negative on /max, then A hast in ]ö, Tmax[i at
most one local maximum which is strictly négative and no local minimum.

Proof : Let us show that every local maximum of A in ]0, TmwJ_ is strictly
négative (see in [5] the study of the GL équations in a bounded interval with
boundary conditions). Let xoe ]0, Tmax[ be a point where A is locally
maximal, then

A'(*o) = O and A"(* 0 )«0 .

The équations (3.3) and (3.4) give then

and using the assumption ƒ > 0, we get A(x0) ^ 0,
But according to the Cauchy-Lipschitz Theorem, we get A(x0) < 0.
Similarly we get that a local minimum satisfies A(x0)>0\ but with

A(0) < 0, this implies the existence of a positive local maximum which is
excluded.

Moreover, the existence of two négative local maxima implies the existence
of a négative local minimum which is again excluded. The lemma is proved.

As a first conséquence, we get for A the following lemma which has to be
compared with Lemma 3.3.
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LEMMA 3.9: Let (f>f,A,A';Imegi) be a maximal solution of (3J)~(3„5)
satisfying (3.9)-(3J0) and such that f is non-negative on Jmax. Ifthere exists
x3 e ]0> Tmsx[ such that A%x3) = O, then A and A'are strictly decreasing on
1xv rmax[' and A is négative on /max.

Proof: We first observe that A"(x3) is different from 0, because
— A"'+ƒ A = 0 on /max. This proves that A has a non degenerate extremum
at JC3, and according to Lemma 3.8, this is a local maximum with
A ( J C 3 ) < 0 . For x > xv we have consequently A( j t )<0 and then
A"(x) <Q. Therefore A and A'are strictly decreasing on ]xv TmstK[ and A is
négative on 7max.

The next lemma complètes Lemma 3.4 (i) when ƒ is non-negative :

LEMMA 3.10: Let ( / , / ,A ,A ' ; 7max) be a maximal solution of (3.1)-(3.5)
satisfying (3.9)-(3.10) and such that f and A are bounded and f is positive on
^max' t^ien C/»/*»^*^') w a solution of the GL équations on ]0, + <*>[.

Proof: We shall use several steps.
Step 1 : Jmax = + oo and f and A' are bounded on ]ö, + <»[.
This is just Lemma 3.4 (i) because ƒ and A are bounded on Jmax.
Step 2 : A is négative and strictly increasing on ]0, + «>[.
We proceed by contradiction. If A is not négative on the whole interval

]0, + oo[, there exists x2 e ]0, + «>[ such that A(JC2) = 0 ; then
Lemma 3.9(i) gives that A is strictly increasing on ]x2, + <x>[ and then
unbounded on /max because Tmm is infinité. We get a contradiction, and that A
is strictly négative on [0, 4- oo[#

Using an analogous proof we get that A'is strictly positive on
[0, + oo[ ; if it is not the case, there exists x3 > 0 such that
A /(x3) = 0, and Lemma 3.9(ii) implies that A 7 <0 on ]x3, + <*>[ ; therefore
A is strictly decreasing on that interval» and because Tmax = + oo, A tends
to — ©o as x —> + ©o, which gives also a contradiction.

Consequently, A is strictly increasing and négative on [0, + °o[.

Step 3 : ƒ is an increasing function on [0, + «>[.
It is sufficient to show that f is non-negative on [0, + oo[ We proceed also

by contradiction. Let us suppose that there exists v0 > 0 such that
fXy0) < 0, then we distinguish two cases :

• a) f admits at least a local minimum,
• b) / 'has no minimum but is decreasing as x tends to + oo.

Case a) : We assume that there exists xQ > 0 where the function
g = ƒ is locally minimal. We have

f\xo) = O with / ( x 0 ) < 0 , (3.20)
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because f\x0) ^ f(y0) < 0. Therefore, using the équation (3.2), we get :

- l + / ( x o ) + A 2 ( x o ) = O. (3.21)

and then, using that ƒ is strictly positive

3 A*o) - 1 +A\x0) = 2f(xQ) > 0 . (3.22)

Let us consider the équation satisfied by g which is obtained by dérivation of
the équation (3.2), that is

- K 2 g"+ ( 3 / - 1 + A2) g = - 2 AA'f. (3.23)

At the point x0, we have :

0"(*O)^O; -A(xo)A'(xo)f(xo)>O; g(xö) =f(x0) < 0 ,

so that we get a contradiction with (3.22).
Consequently, /'cannot have any local minimum on ]0,+ oo[, and the

assumption that there exists JC3 > 0 s.t. f'(x3) < 0 implies that the case b)
holds.

Case b) : We assume now that f is decreasing as x —» + oo.
Because it is also bounded, f admits a limit, denoted by ft, as x tends to

+ oo. We get that ft = 0 because for x large enough
/ U + l ) - / W = / ( O e [ & £ + € ] (where <J e ]* ,*+1[ ) , SO that,
if ft ^ 0, ƒ does not stay bounded and we have again a contradiction.

Therefore/'is a non-negative function on ]0, + °°[ and ƒ is increasing on
]0, + oo[.

Step 4 : The limit m of A is 0 as x -> + oo.
Because ƒ is a bounded increasing function, it admits a limit a as x tends

to + ©o. On an other hand, A ^ 0 implies that A" ̂  0 on [0, + <»[, so that
A ' is decreasing and bounded, and admits also a limit l as x tends to + «>. Let
us show that / = 0 ; this limit is non-negative because A is increasing, and
moreover, for every * e ]0, + oo[ï A(x + 1 ) - A(x) = A' (O > / with
£ e ] JC,^+ 1[, so that, if Z > 0, A cannot have a limit as * tends to
+ oo.

Using now the conservation law (3.12), we get that ƒ has also a limit
as x tends to + oo. Let /? be the limit of f ; ft is non-negative because
ƒ is increasing. Let us show that ft = 0. We use again the
relation ƒ( x + 1 ) - ƒ( x ) = ƒ( <J ) with £ e ]*, x + 1 [ and we get
ƒ'( £ ) ^ ƒ? - e for x large enough, so that ft cannot be strictly positive.
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At the limit, when x tends to + °° in (3.12), we get :

Therefore :

m = 0 and a = 1 »

and (ƒ,ƒ' A, A') is a solution of the GL équations.
As a conséquence of the preceding study, we have :

THEOREM 3.11 : Let (ƒ,ƒ', A»A'; 7 ^ ) be a maximal solution of(3J)-(3,5)
satisfying (3.9)-(3.10). lf f is positive on Jmax, then A hos one of the four
following behaviors :

(a) A is strictly increasing and becomes strictly positive,
(ƒ?) (ƒ, A) is a solution of the GL équations on ]Ö, + <»[,
( y ) A is a concave function and A ' becomes strictly négative,
(ö) A is strictly increasing, Afis strictly decreasing, the both tend to the
finite limit 0 as x —» Tmax> where Tmm is finite, and f tends to +oo as

Proof : We distinguish several cases,
i) There exists xx > 0 such that /(Xj) = 1.
Then, using Lemma 3.5, we get that Tmax is finite and ƒ tends to + oo as

x —» Tmax. Now, Lemma 3.8 gives that :
• either A admits a local maximum and we get the case ( y ),
• or A is strictly increasing on /max and we get once again two possible

cases according to the existence or not of a point x2 such that A(x2) = 0 ; we
get indeed :

— either the case (<*),
— or A admits a finite limit m such that m s£ 0 as x —> Fmax. Then

Lemma 3.7 shows that m = 0 and that A'tends also to the limit 0. We get the
case (S).

ii) For every x e /max then f(x) < 1 :
Lemma 3.4(ii) implies that Tmax = + <». Now,
• if A is unbounded on ]0, + °°[, then, from Lemma 3.8, A satisfies one

of the two cases (a) or (y) (according also to the existence or not of %2 s.t.

• if A is bounded on ]0, + °°[, then we get the case (ƒ?) using
Lemma 3.10.

We would be glad to characterize the initial conditions which lead to each
of these behaviors given by Theorem 3.11.
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Remark 3.12 : Let us remark that, in the two cases (a) and (y) , ƒ can be
bounded or unbounded. When ƒ is unbounded, we get from Lemma 3.5 that
^max 1S fimte and ƒ tends to + <*>. When ƒ is bounded, we get from Lemma 3.4(ii)

Let us improve this last result as follows.
If the maximal solution (ƒ,ƒ, A, A'; 7max) satisfies (3,9)-(3.10), if ƒ is

bounded and non-negative, and if A is unbounded on /max, then ƒ tends to 0 as
x tends to + °o.

Proof : Because A is not bounded, it results from Lemma 3.9(i) or (ii)
(according to the sign of A as x —» + <*> ) that there exists x4 > 0 such that
A2(x) 5= 1 for every x e [x4, + <*>[. Using the relation
Z' (x) = / c 2 ( - l + A 2 ( ; c ) + / ( * ) ) ƒ(*), we get that ƒ"> 0 on
[*4, + <*>[, so that ƒ is convex on that interval and because it is also bounded,
it admits a limit a as x —» + <*>.

On an other hand, ( - l + A 2 ( x ) + / 2 ( x ) ) tends to •+• <» as
i -> + e», so that the limit a o f / i s necessarily 0, otherwise ƒ"would tend to
+ o ° a s i ^ + w and ƒ would not be bounded.

In Subsection 4.2, we define numerical tests for getting a solution of the
GL-equations. They use Theorem3.11, but also some properties of monoto-
nicity for A as function of h, when f0 remains constant, which are observed in
the computations.

4. NUMERICAL COMPUTATIONS OF THE SUPERHEATING FIELD, COMPARISON
WITH THE PHYSICAL LITERATURE

We try to compute, in this section, numerical solutions of the limit problem
(1.6)-(1.9) for weak values of the parameter K and for various values of the
parameter h. We try to have sufficiently précise computations in order to
analyze possible two terms asymptotics of the superheating field Hsh for this
half-space problem and to compare the results that we obtain with the different
formulas or numerical computations which have appeared in the literature.

Let us first recall the different results on the superheating field given in the
physical literature.

4.1. The superheating field in the physical literature

Different formulas for the superheating field are given in the literature and
the purpose of this subsection is to analyze the « proofs » and the numerical
results. We emphasize that we are not comparing with expérimental results.
We only try to analyze the results given by the GL équations, in particular, as
K tends to 0.
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The first « analytic » formula was proposed by the Orsay group in [26] :

HJHc-T
WKm (4.1)

where

2" m « 0.8409 .

An earlier result was given by V. L. Ginzburg [21]. Starting of some homo-
geneity argument, the author assumes that asymptotically

HshIHc~CKm (4.2)

and compute the constant for K = 0.02. He obtains in this way the formula :

Hsh IHC « 0.89 • K
 m . (4.3)

In 1973, Parr and Feder [28] propose on the basis of numerical computations
the following asymptotics :

HshIHC » K~ m T 1 / 4 ( 1 + 0 . 5 3 5 . K ) , (4.4)

with the comment that this approximation is good for K < 0.8. This gives for
example for the constant C in équation (4.2),

C= 1.011.2"174 when *r = 0.02

C = 1.16.2" 1/4 when ?c = 0.3.

In [27] in 1976, Hugo Parr produces by heuristic analytic arguments the
following two terms asymptotic formula :

(4.5)

Let us mention that ( 15 V2/32) « 0.6629.
We shall compare with the numerical results given by Fink and all in [17].

We have actually not very well understood if their results correspond to a
direct computation on the GL-system or if they are obtained through an
approximate analytical formula. The results are the following :

K 10" 3 3.UT3 10~2 3.10" 2 10" l 3.10" l

HshIHc 26.71 15.47 8.496 4.952 2.828 1.809. (4.6)
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These authors propose also an approximate formula for K near 1, but
K< 1

Hsh IHc ~ K
 m 2~ 1/4( 1 + 0 658 K - 0 237 /c2 + 0 009 K ) (4 7)

The coefficients of (4 7) are actually introduced in order to get a very good
approximation for the relatively large K because the correction is only signi-
ficative for K > 10" 2 This formula cannot apparently be considered as an
asymptotic formula in the mathematical sensé, but it is probably more an
interpolation formula calculated m order to fit with the numencal results

Let us compare these different results in several tables We introducé

A = 2m Km(jf) - 1 , and compute A/K

We recall that A gives the différence with the formula (4 1), and that
A/K ~ 0 6629 in the Parr' s formula (4 5) In the followmg tables the different
numencal values have been calculated from the formulas or results referenced
m column 1 with the notations « Fmk (a) » refers to the table (4 6), « Fink
(b) » to the formula (4 7), « BoHe » to the formula (2 19) and « Parr » to (4 5)

Companson of A from these vanous formulas

K 10" 3 3 10" 3 10" 2 3 10"2 10" l 3 10" l

Fmk ( a ) 0 0045 0 0076 0 0103 0 0200 0 0638 0 1782

Fink(fr) 0 00066 0 00198 0 0066 0 0195 0 064 0 176

BoHe 0 0031 0 0077 0 021 0 046 0 10 0 16

Parr 0 00066 0 002 0 0066 0 020 0 066 0 20

Companson of A/K

K

Fmk ( a )

Fmk (b)

BoHe

10" 3

4 5

0 66

3 05

3

2

0

2

10"

53

66

56

3 10" 2

103

0 66

2 035

3 10"

0 66

0 65

155

2 10" ]

0 63

0 64

101

3

0

0

0

10"

594

59

53

All these formulas are relatively good for A in absolute value, but the analysis
of A/K, for K small, shows strong divergence between the different computa-
tions The formula (4 1) of the Orsay group appears as a good asymptotics
when K tends to 0, but the second term m the expansion of H Parr (4 5) fits
only with « Fink (b) » (or (4 6)) when K IS small and with « Fmk (à) » (or
(4 7)) when K IS near 3 10" 2 On an other hand, our formula (2 19) does not
agree very well with the other different results
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But our main remark is that the numerical values obtained for small K are
not sufficiently accurate in order to guess a second term for the asymptotics.
This remark leads us to undertake a numerical study of this problem. This is
the object of the remainder of this section.

4.2. A numerical study of the superheating field

The numerical method that we shall use in order to compute a solution of
the half-space model, is a shooting method on the family of initial value
problems (3.1)-(3.5), with the additional conditions (3.7).

Each initial value problem is solved by a semi-implicit Runge-Kutta method
(of order 3 with 2 intermediate steps) which is an A-stable method (see
M. Crouzeix [15] where this numerical scheme is studied ; see also [16]). Such
a method is used to solve the so called stiff problems which are very sensitive
to a small variation of the initial conditions. This will be the case in our
problem because we are looking for trajectories which tend to the unstable
stationary solution (1, 0, 0, 0) as x tends to °°.

The Runge-Kutta method with a variable stepsize that we have chosen is not
a symplectic intégration method, but this method gives satisfactory results in
our numerical computations of the superheating field (see Subsection 4.2.2) ;
in particular, we verify a posteriori that the conservation law (2.25) is satisfied
up to a sufficiently small error in an interval large enough for giving all the
informations that we are looking for.

4.2.1. The numerical scheme

Let us describe this numerical scheme. If YQ is a prescribed initial condition,
we want to compute numerical approximations for the solution Y on an
ordered set of points xt> {i = 1,..., n} of the interval ]0, Tmax[. Let us suppose
that 7 is a computed approximation of :

Let Ht be a steplength and xi+1 = xt + Ht, then Y(xl + l) will be approximated
by the solution Yl+l of the System :

Y,2 = Y, + *#, F{y,v \ i ) ~ ( ^ ) H, F(y,„*,. ,) (4.8)
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where :

xtl=x, + rHt, (4.9)

xl2 = xl+{\-x)Hl.

The two flrst équations in (4.8) define Y( Y and Yt 2 implicitely ; we must solve
them using itérative methods.

The steplength Ht will be calculated at each step, using a comparison of the
computations at each point with two different steplengths.

According to Section 3, an initial condition YQ will always be chosen such
that (3.9) and (3.10) are satisfied.

4.2.2. Numerical tests

In order to select approximations of the initial condition f0 and of the
exterior magnetic field h which lead to an approximate solution of the GL
équations, we choose some rules which will allow us to interpret our numerical
computations.

According to the theoretical results given in Lernrnas 3.3» 3.5 and 3.9 and
to a lot of tests performed from various values of all the parameters, we
consider that a computed trajectory cannot give a solution of the GL équations
as soon as one of the following conditions is fulfilled (up to a given error) :
A crosses the value 0» A'crosses the value 0, ƒ one of the values 1 or 0.
Consequently, we have set up some numerical tests which stop the itérations
when one of these conditions is fulfilled. We then get a lot of different cases
that we have to classify ; but, our numerical results will confirm that we shall
not meet other cases than the four given by Theorem 3.11.

a) Définitions
Let (xt) be the séquence of points given, as in Subsection4.2.1, by

xi+l =JC( + H( fori € N ,

then a computed solution of (3J)-(3.5) is a séquence Yap = ( Yt)(l) in 1R4 with
yr = C/^fi^A»c*)> where ƒ,, fifl9 A(î Cf are approximations of f(xt), f(xt),
A(xt),AXxt).

By analogy with the theoretical results of Section 3 and in particular with
Theorem 3.11, we choose the following définitions :

DEFINITION 4 . 1 : Let ex > 0, e 2 > 0 , €3 > 0 and €4 > 0 be four small
positive constants.
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A computed solution Yap of (3. l)-(3.5) is called of type ( aap ) if there exists
n e M s.t.

An 5= €j ; At < €j for / = 0, ..., n - 1 ;

Ci > - e2 for i = 0, ..., n ;

ft G ] - e3, 1 + €4[ for i = 0, ..., n .

A computed solution Yap of (3.1)-(3.5) is called of type (j?p) if there exists
n e N s.t.

[ £ - l | ^ € 4 , f(e ] - e 3 , l + € 4 [ for i = 0, .... n - 1 ;

At < €j for i = 0, ..., n ;

C > - e2 for i' = 0, ..., n ,

A computed solution Yap of (3.1)-(3.5) is called of type (yap) if there exists
ns N s.t.

Cn ^ - e2 Ct > - e2 for i = 0, .... n - 1 ;

At < €j for i = 0, ...> n ;

ƒ; e ] - e 3 , 1 +€ 4 [ fori = 0, . . . ,n.

A computed solution Yap of (3.1)-(3.5) is called of type (3ap) if there exists
n e M s.t.

/ „ ^ l + e4 fte ] - € 3 , l + € 4 [ fori = 0 , . . . , w - l ;

A( < €j for/ = 0, ..., n ;

C; > - e2 for / = 0, ..., n .

A computed Yap of (3.1)-(3.5) of type (f?p) will be ail approximation of a
solution of the GL équations on the half-space.

b) Tests when K and f0 are fixed
We flrst test the method described in Subsection 4.2.1 with various values

of K when f0 is flxed (for example, /0 = 0.8 and K - 0.003 ). Hère, we recall
that when h and / 0 are given, Ao is determined by (3.9)(b) and Ao < 0.

We observe only two different behaviors for the computed Yap ; Yap appears
to be of type ( aap ) for small h and of type ( yap ) for large h (see fig. 1).

The computed solution ƒ has always the same behavior. It is given by an
increasing séquence ft, and, if we do not stop the itérations when we have
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Figure 1. — The computed solutions A of the IVP when /e = 0 003 and fo~ 08

found a value n of the index i which allows us to détermine the type of a
computed solution, then the séquence /( crosses the value 1 more or less
quickly according to the value of h (see fig. 2).

0 2 5 SO 7.5 100 12.5 15 0 175 200

Figure 2. — The computed solutions ƒ of the IVP when K = 0003 and fo = O8

But we get that ft e ]0, 1 [ for î s {0, 1,..., n) with n large enough so that
one of the type ( aap ) or ( yap ) for the computed solution can be determined.
In particular, we never find solutions of type (fiap)> neither solutions of type

Let us consider, for some given /0 e ]0, 1[ (for example / 0 = 0.8) the
curve h—> xA(h) where xA(h) is, when it exists, the unique solution of
A(xA(h)) = 0 and where A(x) is a solution of the IVP. We observe that this
curve can be computed on an interval [hinfs hc[ (with

î 9 9

hinf=2 (1 -j%) corresponding to A0 = 0) and that it is increasing and
tends to + <*> as h tends to the critical value hc.

If we consider, now, the curve h—> xA,(h) where *A,(/z) is the unique
solution of A'(xA,{h)) = 0, we observe that this curve can be computed for
every h> hc (with the same critical value hc as before), and that xA,(h) tends
to + °o as h -> hc with h > hc {see fig. 3).
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V

Figure 3 —The curves xAh) and xA (h) when K = 0003 and fo = 08

This particular behavior of the roots of A(x) = 0 suggests that there does
not exist any trajectory such that 7max is bounded and A tends to 0 as
x —» Tmax The behavior of the roots of A\h) = 0 confirms this idea This
means that there is a little chance for the existence of a solution of type
(ôap)

On an other hand, the behavior of the two curves xA(h) and xA (h ) lead us
to think that the cntical value hc is associated to a solution of type (/fp) This
means that, with the assumption that these properties can be generahzed to
others values of f0 and /c, we can détermine closed bounds for a value of h such
that the corresponding solution (ƒ, ƒ' A, A') satisfles the conditions (3 7) This
leads us to propose, as m the precedmg example, the followmg rule

Rule R{

If, for s ome f0 G ]0, 1 [, there exist two values hl and h2 of h such that for
one ofthem the computed solution Yap is o f type ( aap) and, for the other one,
Yap is oftype (yap), then there exists a cntical value hc between hl andh2 such
that the corresponding solution is of type (t?p)

At last, and because the two different behaviors of a trajectory (that is A
crosses the value 0 or A'crosses 0) can easily be deterrruned, a dichotomy
method will allow us to get a good approximation of the cntical hc

c) K and h are fixed

We shall say that f0 is a cntical value of fQ if the computed Yap*s changes
of type when / 0 crosses the value f0

Now, if we keep a fixed h while f0 varies, we observe for h small enough
one or two cntical values of /0, and for large h no cntical value of / 0
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d) Using rules
From the preceding studies, we propose the following rules that we shall use

to interprète our numerical computations :
Rule R\ (instead of Rule /?, ) :
If, for some ft > 0, there exisi two initial conditions f0 and fQ of f0 in

]0, 1[ such that, for one of them, Yap is of type (aap) and, for the other}

Yap is of type (yap), then there exists a critical value f^ betweenfQ andf0 such
that the corresponding solution is of type (^p).

The numerical computations use a bisection method in order to get the
critical values ƒ£.

Let us remark that a value of h satisfying the assumptions of the Rule
R\ gives a lower bound for the superheating field Hsk(K9°°). For small values
of h it is easy to find such f\ and f0, but this is more difficult for h near
Hsh(K, oo) because there exist two critical values of f0 near each other, and
fl

ö and f^ have to separate them (see fig. 4).

0 75-

0 5 -

0.25-

0 0 -

LÉGEND

£ow
tc-o.oœ

00 ' ( 20
7î

Figure 4. — The critica! values f0 as fonction of h for various K

On an other hand, it is not so easy to get an upper bound for HSH{K, OO),
because we have to be sure that A has always the same sign for any /0. In our
computations, we define a steplength ôf0 small enough and we study the
behavior of A for every fo=pôfo such that p e N a n d / 0 Ë ]0 , l [ . Then,

Rule V2 •

If the computed F^'s keep the same type on all the points of the set
{ } we décide that h>Hsh(K,°°).

f p
Sfo=z{fo=PSfo^P e ^} n

 sh
Assuming the Rules R\ and Rv a bisection method on the parameter h will

give the greatest field belonging to aprescribed interval, for which there exists
computed (fA) such that the asymptotic conditions (3.7) are numerically
satisfied.
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e) Numerical results
Figure 4 gives the computed critical solutions ƒ£ as function of h for various

K. We get a curve of «maximal» solutions starting from f0 = 1, which is
defined for h G ]e, Hc

sh], with e > 0 (and for example Hc
sh « 10.87758 when

K = 0.003), and a curve of «minimal» solutions starting from fQ = 0,

defined for h e ] 4 = ; # ' J .
We get in particular that the curve fo^> h = h(f0 ) has a maximum at

h = Hc
sh which suggests the existence of a superheating field.

Figure 5 gives the corresponding A c(0) as function of h.

Figure 5. —The corresponding Ac(0) as function of h.

We observe that, for initial conditions such that (/0, h ) belongs to the
domain limited by the curve of the maximal solutions, the curve of the
minimal solutions and the axis h = 0, then a computed solution is always of
type ( aap ), while a computed solution is of type ( yap ) in the exterior domain.

Remark 4.2 : Our numerical computations show in particular that when
f0 tends to 0, h(fQ) tends to 1/V2 and A(0) tends to -«>. We recall (see
Lemma 2.12) that the same property was observed for the approximate model
in Section 2.

Figure 6 shows the computed solutions/(JC) when h = Hc
sh and x small, for

various values of K. Figure 7 gives the corresponding A(x).
We remark that the results are very sensitive to the accuracy of the initial

value f0 so that on larger intervals than those of these two figures, we observe
a sudden numerical blowing up of the computed solutions ƒ or A.

It results from this sensitivity of the solutions to the initial condition that we
get a very accurate test to compute a critical initial condition. But we need a
good accuracy along the computations ; in our implementation, the numerical
tests depend on several relative précisions that we can control. In the last
computations, the tests, at each step, for the détermination of the steplength,
the intermediate values in the Runge-Kutta method, and the two bisection
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00 50 ISO 200 250 300 350 I

Figure 6. — The computed solutions ƒ of the GL équations when h = Hc
gk

Figure 7. — The computed solutions A of the GL équations when h =

methods on f0 and fc, are used m genera! with a 10 10 -précision (in double
précision) But the tests AI > €1 and Ct<- e2 can be less accurate m order
to détermine the type of a computed solution Yap

Remark 4 3 As mentioned above, we control at each step the value of the
left hand side of the conservation law (2 25) We observe that, as long as the
séquences ft and At slowly vary, the left hand side of (2 25) is of order
10" 8 This is a very satisfactory result We lose this précision when the
numerical blowmg up which was just mentioned above appears

Let us now compare our numerical results with the values obtained m
Section 2 The followmg figures give for K = 0 003, fQ and Ac

0 as function of
h for the GL équations (that is the precedmg results) and for the approximate
model of Section 2 For this last problem» we use a parametnzation by fö of

the expression A( 0 ) = - j - tanh (f0 D ) (see (2 4)), usmg the relations

(2 29) and (2 31) The intermediate v = / 0 D are given by a Newton method
from (2 29)
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We verify that the curves are very closed to each other and this justify the
use of the approximate model in order to get qualitative results on the problem.

n .o

I LEGEND I

l 1

Figure 8. — Comparison of ƒ£( h ) for the GL équations and the approximate model when
K = 0.003.

Figure 9. — Comparison of A\{h) for the GL équations and the approximate model when
K = 0.003.

4.2.3. Computations of the superheating field

We get the following critical values for the superheating field :

K 10"3 3.10"3

Hc
sh 18.81547 10.8775

Hc
sh/Hc 26.6091 15.3831

Ö 0.841454 0.842566

102.zf 6.6260.10" 2

AIK 0.6626 0.66197
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~ - 2 -k - 210" z 3.10" z 10" l 3.10" l

5.98527 3.50029 1.99985 1.280063

8.46445 4.95015 2.82822 1.81028
0.84644 0.85739 0.89436 0.99153

1.9859.10" l 6.5800 1.9617 6.3582 1.7914

0.65980 0.654 0.6358 0.5971
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where

ô = K
mHcJHc and A = K

m 23/4Hc
sh - 1 .

What appears immediately is that AIK is nearly constant and that this constant
becomes very close to the coefficient 15 V5/32 « 0.6629 given by Parr in [27]
(see Subsection 4.1 where these results are analyzed), as K tends to 0. If we
compare our computed values of S and AIK with, resp., the constant
2" 1/4 « 0.840896 in [26] (see (4.1)) and 0.6629 in [27] (see (4.5)), we get :

K 10"3 3 .10 '3 10"2 3.10"2 10" l 3.10" l

€0 5.6. 10" 4 1.7. 10" 3 5.5. 10" 3 1.6. 10" 2 5.3 . 1 0 ' 2 0.15

€j - 3 . 1 0 " 4 -9 .1Q" 4 - 3 . 1 0 " 3 - 9 . 1 0 " 3 - 3 . 1 0 " 2 - 6 . 1 0 " 2

with

€0 = S - 0.840896 , eï = AIK = - 0.6629 .

These results lead us to think that the expansion of KU2 Hsh, for small Kf can
be written with powers of K ; this is in opposition with the expansion given
by the approximate model, in Section 2, which is in powers of
( K . l n ( K ) ) .

Remark 4 A : An important error in these eomputations appears when
computing the différence bet ween two very closed quantities for the calcula-
tion of A. As an example, when ?c = 3.10~3, we get
A = 2m KmHc

sh - 1 » 6.6.10"4, so that we need live true digits for
Hc

sh in order to have only one true digit for A.

Another interesting value is the initial condition / 0 associated to the
superheating field. We get in our eomputations :

K 10"3 3.10~3 10"2 3.10"2 10" l 3.10~1

fQ 0.70689 0.70646 0.7050 0.7007 0.6874 0.656

p 0.22 0.22 0.21 0.21 0.20 0.17

where :
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These numerical results are also in good agreement with the expressions of
f0 given in ([27]). H, Parr gives the following expansion for small K :

= ̂ -iïK with è -0.219. (4.10)

Remark 4.5 : It would be better to have more accuracy on f0 in order to
compute P ; f0 is very close to 2' so that we have the same difficulty as for
the calculation of Â. When K — 3.10" 3, we need four true digits o n ^ to get
only one true digit on ( 2 ~ 1 / 2 - / 0 ) .

All these computations have been performed on the VAX 4000-500 of Ecole
Centrale de Nantes. More details on the algorithm are given in [4].

CONCLUSION

When K is small, our numerical results fit very well with formulas (4.5) and
(4.10) given by H. Parr in [27], both for the superheating field and the
corresponding value of/0. Formula (4.5) appears as an improvement of the
formula (4.1) given by P. G. de Gennes in [19] and the Orsay group in [26].
On the contrary, these numerical results do not agree with the asymptotic
formula that we have obtained in Section 2 by considering an approximate
problem. They show that the best we can hope from the approximate model
is an approximation of the superheating field modulo &( K In ( K~ l ) ). But this
approximate model is not bad in order to study the qualitative properties of the
real problem.

A complete theoretical study of the Ginzburg-Landau équations in
]0, oo[ would be of course quite interesting. Some results are given in [8]
and [10],
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