@article{M2AN_1996__30_7_873_0, author = {Ben-Yu, Guo and He-Ping, Ma and Jing-Yu, Hou}, title = {Chebyshev pseudospectral-hybrid finite element method for two-dimensional vorticity equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {873--905}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {30}, number = {7}, year = {1996}, mrnumber = {1423083}, zbl = {0869.76039}, language = {en}, url = {http://www.numdam.org/item/M2AN_1996__30_7_873_0/} }
TY - JOUR AU - Ben-Yu, Guo AU - He-Ping, Ma AU - Jing-Yu, Hou TI - Chebyshev pseudospectral-hybrid finite element method for two-dimensional vorticity equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1996 SP - 873 EP - 905 VL - 30 IS - 7 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1996__30_7_873_0/ LA - en ID - M2AN_1996__30_7_873_0 ER -
%0 Journal Article %A Ben-Yu, Guo %A He-Ping, Ma %A Jing-Yu, Hou %T Chebyshev pseudospectral-hybrid finite element method for two-dimensional vorticity equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1996 %P 873-905 %V 30 %N 7 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1996__30_7_873_0/ %G en %F M2AN_1996__30_7_873_0
Ben-Yu, Guo; He-Ping, Ma; Jing-Yu, Hou. Chebyshev pseudospectral-hybrid finite element method for two-dimensional vorticity equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 30 (1996) no. 7, pp. 873-905. http://www.numdam.org/item/M2AN_1996__30_7_873_0/
[1] Computational Fluid Dynamics, 2'nd edition, Hermosa Publishers, Albuquerque. | MR
, 1976,[2] Difference Methods for Partial Differential Equations, Science Press, Beijing.
, 1988,[3] Finite Element Methods in Flow Problems, John Wiley, New York.
, , and , 1974,[4] Approximation numérique des Phénomènes de diffusion convection, in Méthodes d'éléments Finis en Mécaniques des Fluides, Cours à L'École d'été d'analyse numérique.
, 1979,[5] Spectral Methods in Fluid Dynamics, Springer Verlag, Berlin. | MR | Zbl
, , and , 1988,[6] The convergence of a spectral scheme for solving the two-dimensional vorticity equation, J. Comp. Math., 1, pp. 353-362. | Zbl
, 1983,[7] The Founer pseudospectral method for solving two-dimensional vorticity equations, IMA J. Numer. Anal., 7, pp. 47-60. | MR
and , 1987,[8] A numencal study of nonlinear effects on boundary-layer stability, AIAA Journal, 15, pp. 1167-1173.
, 1977,[9] Flow past a suddenly heated vertical plate, Proc R. Soc. London, A 402, pp. 109-134. | Zbl
, 1985,[10] Spectral-difference method for baroclinic primitive equation and its error estimation, Scientia Sinica, A 30, pp. 696-713. | MR | Zbl
, 1987,[11] Spectral-différence method for solving two-dimensional vorticity equation, J. Comp. Math., 6, pp. 238-257. | MR | Zbl
, 1988,[12] Combined finite element and spectral approximation of the Navier-Stokes equations, Numer. Math., 44, pp. 201-217. | MR | Zbl
, and , 1984,[13] A pseudospectral-finite element method for solving two-dimensional vorticity equations, SIAM J. Numer. Anal., 28, pp. 113-132. | MR | Zbl
and , 1991,[14] A combined spectral-finite element method for solving two-dimensional unsteady Navier-Stokes equations, J. Comp. Phys., 101, pp. 375-385. | MR | Zbl
and , 1992,[15] The Founer-Chebyshev spectral method for solving two-dimensional unsteady vorticity equations, J. Comp. Phys., 101, pp. 207-217. | MR | Zbl
, , and , 1992,[16] Founer-Chebyshev pseudospectral method for two-dimensional voriticity equation, Numer. Math., 66, pp. 329-346. | MR | Zbl
and , 1993,[17] Chebyshev spectral-fini te element method for incompressible fluid flow (unpubhshed).
and ,[18] Quelques Méthodes de Résolutions des Problèmes aux Limites Non Linéaires, Paris, Dunod. | MR | Zbl
, 1969,[19] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | MR | Zbl
, 1978,[20] The Chebyshev spectral method for Burgers-like equations, J. Comp. Math, 6, pp. 48-53. | MR | Zbl
and , 1988,[21] Variational methods in the theoretical analysis of spectral approximations, in Spectral Methods for Partial Differential Equations, pp. 55-78, ed. by R. G. Voigt, D. Gottlieb and M. Y. Hussaim, SIAM-CBMS, Philadelphia. | MR | Zbl
and , 1984,[22] Analysis for the combined finite element and Founer interpolation, Numer. Math., 39, pp. 205-220. | MR | Zbl
, and , 1982,[23] Properties of some weighted Sobolev spaces and application to spectral approximations, SIAM J. Numer. Anal., 26, pp. 769-829. | MR | Zbl
and , 1989,[24] Legendre and Chebyshev spectral approximations of Burger's equation, Numer. Math., 37, pp. 321-332. | MR | Zbl
and , 1981,