C.-H. Bruneau
 P. FABRIE
 New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result

M2AN - Modélisation mathématique et analyse numérique, tome 30, n ${ }^{\circ} 7$ (1996), p. 815-840
http://www.numdam.org/item?id=M2AN_1996__30_7_815_0
© AFCET, 1996, tous droits réservés.
L'accès aux archives de la revue «M2AN - Modélisation mathématique et analyse numérique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

NEW EFFICIENT BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS : A WELL-POSEDNESS RESULT (*)

by C.-H. Bruneau (1) and P. Fabrie (${ }^{1},{ }^{2}$)

Abstract

Efficient natural conditions on open boundaries for incompressible flows are derived from a weak formulation of Navier-Stokes equations. Energy estimates in velocitypressure are established from a mixed formulation and a rigourous proof of existence of solutions is given. As an illustration, the conditions are written down for the flow behind an obstacle in a channel. Moreover, numerical tests have shown the accuracy and robustness of such conditions.

INTRODUCTION

The aim of this work is to find out boundary conditions that convey properly the vortices through an artificial limit of the domain. These last ten years, many authors have dealt with this problem for various equations, the most famous of which is the wave equation. Following the theory of absorbing boundary conditions, Halpern [8] for the linear advection diffusion equation and Halpern-Schatzman [9] for the linearized Navier-Stokes equations derive artificial conditions that yield a well-posed problem. In [2], Begue-Conca-Murat-Pironneau review a family of boundary conditions on dynamical pressure for stationary Stokes and Navier-Stokes equations, show that these conditions lead to well-posed problems and give some numerical experiments. Their conditions in vorticity are, in some way, natural boundary conditions for a weak formulation in velocity-pressure.

In this paper, we present natural boundary conditions for a weak formulation in velocity-pressure involving the stress tensor

$$
\sigma(U, p)=\frac{2}{R e} D(U)-p I, \quad \text { with } \quad D(U)_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) .
$$

For Stokes problem, these conditions reduce to

$$
\sigma(U, p) \cdot n=G
$$

[^0]on open boundaries where n is the unit outward normal vector.
For Navier-Stokes equations, we take into account the contribution of convection terms to avoid reflections on artificial boundaries. We establish in the general case, existence of a weak solution for unsteady flows and uniqueness in two dimension. The proof follows classical techniques using Cauchy-Kovaleska regularization. Moreover, our conditions have been used successfully to compute the flow behind a cylinder in a channel [3]. The numerical results at high Reynolds numbers, exhibit accurate solutions without any reflections even when strong vortices cross the artificial limit of the domain.

1. WEAK FORMULATION

The goal of this work is to find out open boundary conditions for incompressible Navier-Stokes equations. Let Ω be a connected bounded domain in $\mathbb{R}^{N}(N \leqslant 3)$ with smooth boundary $\partial \Omega$; we assume that $\partial \Omega$ has two connected components Γ_{0} and $\Gamma_{1}=\Gamma_{D} \cup \Gamma_{N}$ with meas $\left(\Gamma_{D}\right) \neq 0$ meas $\left(\Gamma_{N}\right) \neq 0$ and $\Gamma_{D} \cap \Gamma_{N}=\varnothing$ (see fig. 1).

Figure 1. - The domain Ω.

We want to solve the following evolution problem for $t \in(0, T)$

$\partial_{t} U+(U \cdot \nabla) \cdot U-\operatorname{div} \sigma(U, p)=0$	in $Q_{T}=\Omega \times(0, T)$
$\operatorname{div} U=0$	in Q_{T}
$U(x, 0)=U_{i n}(x)$	in Ω
$U(., t)=0$	on $\Gamma_{0} \times(0, T)$
$U(., t)=G_{D}$	on $\Gamma_{D} \times(0, T)$
and an artificial condition	on Γ_{N}

and we assume that there exists G_{1} an extension of G_{D} to Γ_{1} such that $\int_{\Gamma} G_{1} d \gamma=0$.

We shall precise the functional spaces and the regularity of the data in Section 2.

1.1. Auxiliary Stokes problem

For solving the problem (\mathscr{P}), it is convenient to introduce a divergence free function U_{0} such that the trace of U_{0} on Γ_{0} is zero and the trace of U_{0} on Γ_{1} is G_{1}. Without any loss of generality we take (U_{0}, p_{0}) solution of the following Stokes problem

$$
\text { (S) } \begin{array}{ll}
\operatorname{div} \sigma\left(U_{0}, p_{0}\right)=0 & \text { in } \quad \Omega \\
\operatorname{div} U_{0}=0 & \text { in } \Omega \\
U_{0}=0 & \text { in } \Gamma_{0} \\
U_{0}=G_{1} & \text { on } \Gamma_{1} .
\end{array}
$$

Under hypothesis of regularity on Ω and G_{1}, the problem (\mathscr{S}) has always a unique regular solution [14]. So, by setting $V=U-U_{0}$ and $q=p-p_{0}$, the problem (\mathscr{P}) is equivalent to $\left(\mathscr{P}_{\text {hom }}\right)$

$$
\begin{array}{ll}
\quad \partial_{1} V+\left(\left(V+U_{0}\right) \cdot \nabla\right) \cdot\left(V+U_{0}\right)-\operatorname{div} \sigma(V, q)=0 & \text { in } \Omega \times(0, T) \\
\operatorname{div} V=0 & \text { in } \Omega \times(0, T) \\
\left(\mathscr{P}_{\text {hom }}\right) & V(x, 0)=V_{\text {in }}(x)=U_{\text {in }}(x)-U_{0}(x) \\
& \text { in } \Omega \\
& \text { on } \Gamma_{0} \cup \Gamma_{D} \times(0, T)=0 \\
& \text { ond an artificial condition }
\end{array} \Gamma_{N} .
$$

In this work, we establish a family of natural boundary conditions on Γ_{N} for ($\mathscr{P}_{\text {hom }}$). These conditions can depend on U_{0} and, as U_{0} is uniquely determined by G_{1}, the only arbitrary action is the choice of G_{1}. In Section 3, we show that the physics of the problem generaly yields a canonical extension.

1.2. Formal open boundary conditions

Let us denote (Ψ, π) a couple of regular test functions such that Ψ vanishes on $\Gamma_{0} \cup \Gamma_{D}$. Assuming the solution of ($\left.\mathscr{P}_{\text {hom }}\right)$ is smooth enough, we can write by splitting the convection term

$$
\begin{aligned}
& \int_{\Omega} \partial_{t} V \cdot \psi d x+\int_{\Omega}(V \cdot \nabla) V \cdot \Psi d x+\int_{\Omega}\left(U_{0} \cdot \nabla\right) V \cdot \Psi d x+ \\
& \quad+\int_{\Omega} V \cdot \nabla U_{0} \cdot \Psi d x+\int_{\Omega} U_{0} \cdot \nabla U_{0} \cdot \Psi d x-\int_{\Omega} \operatorname{div} \sigma(V, q) \cdot \Psi d x=0
\end{aligned}
$$

Let us take three arbitrary real numbers $\alpha_{i}, 1 \leqslant i \leqslant 3$. Integrating by part, we get

$$
\begin{aligned}
& \int_{\Omega} \partial_{1} V \cdot \Psi d x+\frac{1}{2} \int_{\Omega}(V \cdot \nabla V \cdot \Psi-V \cdot \nabla \Psi \cdot V) d x+\frac{1}{2} \int_{\Gamma_{N}} V \cdot n V \cdot \Psi d \gamma+ \\
+ & \int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V\right) d x+\left(1-\alpha_{1}\right) \int_{\Gamma_{N}} U_{0} \cdot n V \cdot \Psi d \gamma \\
+ & \int_{\Omega}\left(\alpha_{2} V \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V \cdot \nabla \Psi \cdot U_{0}\right) d x+\left(1-\alpha_{2}\right) \int_{\Gamma_{N}} V \cdot n U_{0} \cdot \Psi d \gamma \\
+ & \int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) d x+\left(1-\alpha_{3}\right) \\
\times & \int_{\Gamma_{N}} U_{0} \cdot n U_{0} \cdot \Psi d \gamma+\int_{\Omega} \sigma(V, q): \nabla \Psi d x-\int_{\Gamma_{N}} \sigma(V, q) \cdot n \cdot \Psi d \gamma=0 .
\end{aligned}
$$

Indeed, we point out to the reader that by symmetry

$$
D(V): \nabla \Psi=D(V): D(\Psi)
$$

and that

$$
q I: \nabla \Psi=q \operatorname{div} \Psi
$$

Moreover, we gather some boundary terms to obtain for instance

$$
\begin{aligned}
& \frac{1}{2} \int_{\Gamma_{N}} V \cdot n V \cdot \Psi d \gamma+\left(1-\alpha_{1}\right) \int_{\Gamma_{N}} U_{0} \cdot n V \cdot \Psi d \gamma= \\
&=\int_{\Gamma_{N}}\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right) V \cdot \Psi d \gamma=\int_{\Gamma_{N}} h(V) V \cdot \Psi d \gamma .
\end{aligned}
$$

If $h(V)$ is a non negative term, we can derive an a priori estimate for the velocity and the pressure as it is shown below. Otherwise, we must vanishe at least the negative part. Indeed, if we remark that we can write

$$
h(V)=h(V)^{+}-h(V)^{-}=2 h(V)^{+}-|h(V)|
$$

it is possible to keep in the weak formulation either $h(V)^{+}$or $2 h(V)^{+}$.
Further, in the general case, an external force F can be applied on Γ_{N}.

So, the weak formulation reads

$$
\begin{aligned}
& \quad \int_{\Omega} \partial_{1} V \cdot \Psi+\frac{1}{2}(V \cdot \nabla V \cdot \Psi-V \cdot \nabla \Psi \cdot V) d x \\
& \quad+\int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V\right) d x \\
& \quad+\int_{\Omega}\left(\alpha_{2} V \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V \cdot \nabla \Psi \cdot U_{0}\right) d x \\
& (\mathscr{F})+\int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) d x \\
& \quad+\frac{2}{R e} \int_{\Omega} D(V): D(\Psi) d x \\
& \quad-\int_{\Omega} q \operatorname{div} \Psi d x+\beta \int_{\Gamma_{N}}\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V \cdot \Psi d \gamma \\
& \quad+\beta \int_{\Gamma_{N}}\left(\left(1-\alpha_{2}\right) V \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+} U_{0} \cdot \Psi d \gamma=\int_{\Gamma_{N}} F \cdot \Psi d \gamma, \\
& \quad \int_{\Omega} \pi \operatorname{div} V d x=0,
\end{aligned}
$$

where β is a non negative real number.
Under some regularity assumptions on (V, q), the weak formulation yields

$$
\begin{array}{rlrl}
& \partial_{t} V+\left(\left(V+U_{0}\right) \cdot \nabla\right) \cdot\left(V+U_{0}\right)-\operatorname{div} \sigma(V, q)=0 & & \text { in } \Omega \times(0, T) \\
& \operatorname{div} V=0 & & \text { in } \Omega \times(0, T) \\
& V(x, 0)=V_{\text {in }}(x) & & \text { in } \Omega \\
\left(\mathscr{P}_{\text {hom }}\right) & V(., t)=0 & & \text { on } \Gamma_{0} \cup \Gamma_{D} \times(0, T) \\
& \sigma(V, q) \cdot n+\left(\beta\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+}-\right. & & \\
& \left.\quad-\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)\right) V+ & & \\
& \left(\beta\left(\left(1-\alpha_{2}\right) V \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+}-\right. & & \\
& \left.\quad-\left(\left(1-\alpha_{2}\right) V \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)\right) U_{0}=F & \text { on } \Gamma_{N} \times(0, T) .
\end{array}
$$

vol. $30, n^{\circ} 7,1996$

To well understand the boundary condition, we point out to the reader that the nonlinear term $V . \nabla V, \Psi$ in (\mathscr{F}) must be symmetrized to obtain an energy estimate [10], [13], [14].

On the contrary, for the other contributions of the convection term, we have the choice to symmetrize them or not. That corresponds to $\alpha_{i}=1 / 2$ or $\alpha_{i}=1$. On the other hand, β taking the values 0,1 or 2 leads to vanishe respectively $h(V),-h(V)^{-}$or $-|h(V)|$ in the above expression. However, from the mathematical point of view, we need only to assume that β is a non negative real number to get a well-posed problem.

As an example, for $\alpha_{1}=1 / 2$ and $\alpha_{2}=\alpha_{3}=1$, the boundary condition reduces to
$\sigma(V, q) \cdot n+\frac{1}{2}\left[\beta\left(\left(V+U_{0}\right) \cdot n\right)^{+}-\left(V+U_{0}\right) \cdot n\right] V=F$
on $\quad \Gamma_{N} \times(0, T)$
and if we consider only the three values of $\beta 0,1 / 2$ or 1 , it can be written on the form

$$
\sigma(V, q) \cdot n-\frac{1}{2} \Theta\left(\left(V+U_{0}\right) \cdot n\right) V=F \quad \text { on } \quad \Gamma_{N} \times(0, T)
$$

where Θ is one of the following real functions

$$
\Theta(a)=a, \quad \Theta(a)=-a^{-} \quad \text { or } \quad \Theta(a)=-|a|
$$

Finally the initial problem reads

$$
\begin{array}{ll}
& \partial_{t} U+(U \cdot \nabla) \cdot U-\operatorname{div} \sigma(U, p)=0 \\
& \text { in } \Omega \times(0, T) \\
& \operatorname{div} U=0
\end{array} \quad \text { in } \Omega \times(0, T)
$$

where F is equal to zero on artificial boundaries and α_{i} is equal to $1 / 2$ or 1 .
Let us note that, for Stokes flow, the artificial boundary conditions reduce to

$$
\text { (0) } \quad \sigma(U, p) \cdot n=\sigma\left(U_{0}, p_{0}\right) \cdot n+F \quad \text { on } \quad \Gamma_{N} \times(0, T)
$$

which is the natural condition. Moreover for Navier-Stokes flow, when $\alpha_{1}=1 / 2, \quad \alpha_{2}=\alpha_{3}$ and $U . n \geqslant 0$ on $\Gamma_{N} \times(0, T)$ we get again this condition with $\Theta(a)=-a^{-}$. That means that for an outgoing flow, it is sufficient to impose Stokes boundary conditions.

We point out to the reader that the condition

$$
\sigma(U, p) \cdot n=0 \quad \text { on } \quad \Gamma_{N} \times(0, T)
$$

is not always compatible with a reference flow.
Remark 1: If instead of $\sigma(U, p)$, we use the pseudo tensor

$$
\tilde{\sigma}(U, p)=\frac{1}{R e} \nabla U-p I,
$$

then the boundary conditions read

$$
\begin{aligned}
& \tilde{\sigma}(U, p) \cdot n-\frac{1}{2} \Theta\left(U \cdot n+\left(1-2 \alpha_{1}\right) U_{0} \cdot n\right)\left(U-U_{0}\right)- \\
& \quad-\Theta\left(\left(1-\alpha_{2}\right) U \cdot n+\left(\alpha_{2}-\alpha_{3}\right) U_{0} \cdot n\right) U_{0}=\tilde{\sigma}\left(U_{0}, p_{0}\right) \cdot n+F \quad \text { on } \Gamma_{N}
\end{aligned}
$$

and in the same way they reduce to

$$
\tilde{\sigma}(U, p)=\tilde{\sigma}\left(U_{0}, p_{0}\right) \cdot n+F \quad \text { on } \quad \Gamma_{N} \times(0, T)
$$

for Stokes flows.

2. EXISTENCE OF WEAK SOLUTIONS

In this section, we prove the existence of weak solutions (V, q) of ($\mathscr{F})$ and uniqueness in two dimension. We first introduce the following notations

$$
\begin{aligned}
\mathbb{Q}^{p}(\Omega) & =\left(L^{p}(\Omega)\right)^{N}, p \geqslant 1, \text { provided with the norm }|\cdot|_{p} \text { or }|\cdot| \text { for } p=2 \\
\mathbb{H}_{0} & =\left\{V \in \mathbb{L}^{2}(\Omega) ; \operatorname{div} V=0 ; n=0 \text { on } \Gamma_{0} \cup \Gamma_{D}\right\} \\
\mathbb{H}^{s}(\Omega) & =\left(H^{s}(\Omega)\right)^{N}, s \geqslant 0, \text { provided with the norm }\|\cdot\|_{s} \\
\mathbb{H}_{D}^{\prime}(\Omega) & =\left\{V \in \mathbb{H}^{\prime}(\Omega) ; V=0 \text { on } \Gamma_{0} \cup \Gamma_{D}\right\} \\
\mathbb{H}_{D, 0}^{1}(\Omega) & =\left\{V \in \mathbb{H}_{D}^{\prime}(\Omega) ; \operatorname{div} V=0\right\} \\
\mathbb{X} & =\left\{\Psi \in H^{1}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega)\right) ; \Psi(T)=0\right\} \\
\mathbb{X}_{0} & =\{\Psi \in \mathbb{X} ; \operatorname{div} \Psi=0\} \\
\mathbb{V} & =\left\{\pi \in H^{\prime}\left(0, T ; L^{2}(\Omega)\right) ; \pi(T)=0\right\} \\
\mathbb{V} & =L^{\infty}\left(0, T ; \mathbb{L}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega)\right) \\
\mathbb{V} & =L^{\infty}\left(0, T ; \mathbb{R}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \mathbb{H}_{D, 0}^{1}(\Omega)\right) \\
\mathbb{Q} & =\mathbb{Y}^{\prime} .
\end{aligned}
$$

Then, we write a mixed formulation in order to easily derive the artificial boundary conditions in a formal way. For $U_{0} \in \mathbb{M}^{2}(\Omega), V_{i n} \in \mathbb{H}_{0}$ and $F \in H^{-1 / 2}\left(\Gamma_{N}\right)$, we seek a couple $(V, q) \in \mathbb{V} \times \mathbb{Q}$ such that we have in $\mathscr{D}^{\prime}(0, T)$

$$
\begin{aligned}
& \int_{\Omega_{2}} \partial_{1} V \cdot \Psi+\frac{1}{2}(V \cdot \nabla V \cdot \Psi-V \cdot \nabla \Psi \cdot V) d x \\
& +\int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V\right) d x \\
& +\int_{\Omega}\left(\alpha_{2} V \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V \cdot \nabla \Psi \cdot U_{0}\right) d x \\
& +\int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) d x \\
& +\frac{2}{R e} \int_{\Omega} D(V): D(\Psi) d x
\end{aligned}
$$

$$
(\mathscr{F})-\langle q, \operatorname{div} \Psi\rangle_{\Omega}+\beta \int_{\Gamma_{N}}\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V \cdot \Psi d \gamma
$$

$$
+\beta \int_{\Gamma_{N}}\left(\left(1-\alpha_{2}\right) V \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+} U_{0} \cdot \Psi d \gamma=\langle F \cdot \Psi\rangle_{\Gamma_{N}}
$$

$$
\int_{\Omega} \pi \operatorname{div} V d x=0 \quad \forall(\Psi, \pi) \in \mathbb{X} \times \mathbb{Y}
$$

$$
V(., 0)=V_{i n}
$$

Remark 2: To give sense to the equality $V(., 0)=V_{i n}$ we first take the test function Ψ in \mathbb{X}_{0}.

On one hand, for the bidimensional problem, the solution is regular enough in the variable V to take Ψ in \mathbb{V}_{0}; so $\partial_{t} V$ belongs to $L^{2}\left(0, T ; \mathbb{H}_{D, 0}^{1}(\Omega)^{\prime}\right)$ and
then V is continuous from $[0, T]$ into \mathbb{H}_{0}. On the other hand, in 3D we can see that V is continuous from [$0, T$] into

$$
\left[\mathbb{H}_{D, 0}^{1}(\Omega),\left(\mathbb{H}_{D, 0}^{1}(\Omega) \cap \mathbb{H}^{2}(\Omega)\right)^{\prime}\right]_{1 / 2}([10])
$$

So it is important to take a free divergence initial condition.

2.1. Regularized problem

We approximate the Navier-Stokes equations by the artificial compressibility method (see [14]).

That is to seek a couple $\left(V_{\varepsilon}, q_{\varepsilon}\right) \in \mathbb{V} \times L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ such that for a small $\varepsilon>0$ we have in $\mathscr{D}^{\prime}(0, T)$

$$
\begin{aligned}
& \int_{\Omega} \partial_{t} V_{\varepsilon} \cdot \Psi+\frac{1}{2}\left(V_{\varepsilon} \cdot \nabla V_{\varepsilon} \cdot \Psi-V_{\varepsilon} \cdot \nabla \Psi \cdot V_{\varepsilon}\right) d x \\
& \\
& \quad+\int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V_{\varepsilon} \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V_{\varepsilon}\right) d x \\
& \\
& \quad+\int_{\Omega}\left(\alpha_{2} V_{\varepsilon} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V_{\varepsilon} \cdot \nabla \Psi \cdot U_{0}\right) d x \\
& \\
& \quad+\int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) d x \\
& \left(\mathscr{R e} \int_{\Omega} D\left(V_{\varepsilon}\right): D(\Psi) d x\right. \\
& \\
& \quad-\left\langle q_{\varepsilon}, \operatorname{div} \Psi\right\rangle_{\Omega}+\beta \int_{\Gamma_{N}}\left(\frac{1}{2} V_{\varepsilon} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V_{\varepsilon} \cdot \Psi d \gamma \\
& \\
& \quad+\beta \int_{\Gamma_{N}}\left(\left(1-\alpha_{2}\right) V_{\varepsilon} \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+} U_{0} \cdot \Psi d \gamma=\langle F \cdot \Psi\rangle_{\Gamma_{N}}, \\
& \varepsilon \int_{\Omega} \partial_{1} q_{\varepsilon} \pi d x+\int_{\Omega} \operatorname{div} V_{\varepsilon} \pi d x=0 \quad \forall(\Psi, \pi) \in \mathbb{X} \times \mathbb{Y}, \\
&
\end{aligned}
$$

Remark 3: To give sense to the equalities $V_{i}(., 0)=V_{i n}$ and $q_{\varepsilon}(., 0)=q_{i n}$ we distinguish the 2D problem from the 3 D one.

For the bidimensional problem, when ε is fixed, the solution is regular enough to get $\partial_{t} V_{\varepsilon}$ in $L^{2}\left(0, T ; H_{D}^{1}(\Omega)^{\prime}\right)$ and then V_{ε} is continuous from $[0, T]$ into $\mathbb{L}^{2}(\Omega)$. In the same way, we can easily see that q_{ε} is also continuous from [0,T] into $L^{2}(\Omega)$. For the 3D case, we have the same result for the pressure but V is only continuous from $[0, T]$ into $\left[\mathbb{H}_{D}^{1}(\Omega),\left(\mathbb{H}_{D}^{1}(\Omega) \cap \mathbb{H}^{2}(\Omega)\right)^{\prime}\right]_{1 / 2}([10])$. We take a free divergence initial datum $V_{\text {in }}$ to avoid discontinuity at $t=0$ for the limit problem.

PROPOSITION 1: For $U_{0} \in \mathbb{H}^{2}(\Omega), \quad V_{\text {in }} \in \mathbb{H}_{0}, \quad q_{i n} \in L^{2}(\Omega)$ and $F \in \mathcal{H}^{-1 / 2}\left(\Gamma_{N}\right)$, the problem $\left(\mathscr{F}_{c}\right)$ admits at least one solution which is unique in the $2 D$ case.

Sketch of proof. By Galerkin method, we can show easily that there exists at least one couple $\left(V_{\varepsilon}, q_{\varepsilon}\right)$ solution of $\left(\mathscr{F}_{\varepsilon}\right)$ which is unique in two dimension. We refer to [10], [14] for the idea of the proof.

2.2. A priori estimates

In order to pass to the limit when ε goes to zero, it is convenient to establish the following a priori estimates independently of ε.

Proposition 2: For each $T>0$, there exist some constants c_{1}, c_{2}, c_{3} which depend only on T such that

$$
\begin{align*}
& \sup _{t \in(0, T)}\left|V_{\varepsilon}(t)\right| \leqslant c_{1} \tag{1}\\
& \int_{0}^{T}\left|\nabla V_{\varepsilon}(t)\right|^{2} d t \leqslant c_{2} \\
& \sup _{t \in(0, T)} \sqrt{\varepsilon}\left|q_{\varepsilon}(t)\right| \leqslant c_{3} . \tag{3}
\end{align*}
$$

Proof: We first give the proof in 2D. In this case, the solution is regular enough to take the test functions $(\Psi, \pi) \in \mathbb{V} \times L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ in $\left(\mathscr{F}_{\varepsilon}\right)$. So, taking $(\Psi, \pi)=\left(V_{\varepsilon}, q_{\varepsilon}\right)$ and summing both equations, we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left|V_{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \frac{d}{d t}\left|q_{\varepsilon}\right|^{2}+\frac{2}{R e} \int_{\Omega} D\left(V_{\varepsilon}\right): D\left(V_{\varepsilon}\right) d x+ \\
& \quad+\beta \int_{\Gamma_{N}}\left(\frac{1}{2} V_{\varepsilon} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V_{\varepsilon} \cdot V_{\varepsilon} d \gamma \\
& \leqslant \\
& \quad\left|2 \alpha_{1}-1\right|\left|U_{0}\right|_{\infty}\left|\nabla V_{\varepsilon}\right|\left|V_{\varepsilon}\right|+\left|\alpha_{2}\right|\left|V_{\varepsilon}\right|_{3}^{2}\left|\nabla U_{0}\right|_{3}+ \\
& \quad+\left|1-\alpha_{2}\right|\left|U_{0}\right|_{\infty}\left|\nabla V_{\varepsilon}\right|\left|V_{\varepsilon}\right| \\
& \quad+\left|\alpha_{3}\right|\left|U_{0}\right|_{\infty}\left|\nabla U_{0}\right|\left|V_{\varepsilon}\right|+\left|1-\alpha_{3}\right|\left|U_{0}\right|_{4}^{2}\left|\nabla V_{\varepsilon}\right| \\
& \quad+\beta\left|\left(\left(1-\alpha_{2}\right) V_{\varepsilon} \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+}\right|_{3, \Gamma_{N}}\left|U_{0}\right|_{3, \Gamma_{N}}\left|V_{\varepsilon}\right|_{3, \Gamma_{N}} \\
& \quad+\|F\|_{-1 / 2, \Gamma_{N}}\left\|V_{n}\right\|_{1 / 2, \Gamma_{N}}
\end{aligned}
$$

then, by Korn inequality we have ([5])

$$
\left|D\left(V_{\varepsilon}\right)\right|^{2} \geqslant \eta\left|\nabla V_{\varepsilon}\right|^{2}
$$

and by Sobolev embeddings for $N \leqslant 3$ and interpolation inequality [1]

$$
\begin{aligned}
\left|U_{0}\right|_{\infty} & \leqslant c(\Omega)\left\|U_{0}\right\|_{2} \\
\left|\nabla U_{0}\right|_{3} & \leqslant c(\Omega)\left\|U_{0}\right\|_{2} \\
\left|V_{\varepsilon}\right|_{3} & \leqslant c(\Omega)\left|V_{\varepsilon}\right|^{1 / 2}\left|\nabla V_{\varepsilon}\right|^{1 / 2}
\end{aligned}
$$

where $c(\Omega)$ denotes a generic constant. Moreover, by Sobolev embedding and continuity of the trace operator, we have on Γ_{N}

$$
\left|V_{\varepsilon}\right|_{3, \Gamma_{N}} \leqslant c\left(\Gamma_{N}\right)\left\|V_{\varepsilon}\right\|_{1 / 3, \Gamma_{n}} \leqslant c\left(\Gamma_{N}, \Omega\right)\left\|V_{\varepsilon}\right\|_{5 / 6} .
$$

So, by interpolation inequality

$$
\left|V_{\varepsilon}\right|_{3, \Gamma_{N}} \leqslant c\left(\Gamma_{N}, \Omega\right)\left|V_{\varepsilon}\right|^{1 / 6}\left|\nabla V_{\varepsilon}\right|^{5 / 6}
$$

vol. $30, n^{\circ} 7,1996$

Thus

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left|V_{\varepsilon}\right|^{2}+\frac{\varepsilon}{2} \frac{d}{d t}\left|q_{\varepsilon}\right|^{2}+\frac{2 \eta}{R e}\left|\nabla V_{\varepsilon}\right|^{2} \leqslant \\
& \leqslant c(\Omega)\left(\left|2 \alpha_{1}-1\right|+\left|1-\alpha_{2}\right|\right)\left\|U_{0}\right\|_{2}\left|\nabla V_{\varepsilon}\right|\left|V_{\varepsilon}\right| \\
&+c(\Omega)\left|\alpha_{2}\right|\left\|U_{0}\right\|_{2}\left|\nabla V_{\varepsilon}\right|\left|V_{\varepsilon}\right| \\
&+c(\Omega)\left|\alpha_{3}\right|\left\|U_{0}\right\|_{2}^{2}\left|V_{\varepsilon}\right|+c(\Omega)\left|1-\alpha_{3}\right|\left\|U_{0}\right\|_{2}^{2}\left|\nabla V_{\varepsilon}\right| \\
&+c\left(\Gamma_{N}, \Omega\right) \beta\left|1-\alpha_{2}\right|\left\|U_{0}\right\|_{2}\left|V_{\varepsilon}\right|^{1 / 3}\left|\nabla V_{\varepsilon}\right|^{5 / 3} \\
&+c\left(\Gamma_{N}, \Omega\right) \beta\left|1-\alpha_{3}\right|\left\|U_{0}\right\|_{2}^{2}\left|V_{\varepsilon}\right|^{1 / 6}\left|\nabla V_{\varepsilon}\right|^{5 / 6} \\
&+c\left(\Gamma_{N}, \Omega\right)\|F\|_{-1 / 2 . \Gamma_{N}}\left|\nabla V_{\varepsilon}\right| .
\end{aligned}
$$

Then, using Young inequality for any positive real numbers a, b

$$
a b \leqslant \frac{1}{p}\left(\frac{a}{\delta}\right)^{p}+\frac{1}{q}(b \delta)^{q}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and δ is a positive real number of our choice, we finally have

$$
\frac{d}{d}\left|V_{\varepsilon}\right|^{2}+\varepsilon \frac{d}{d t}\left|q_{\varepsilon}\right|^{2}+\frac{2 \eta}{R e}\left|\nabla V_{\varepsilon}\right|^{2} \leqslant c_{4}\left|V_{c}\right|^{2}+c_{5}
$$

where c_{4} and c_{5} depend only on the data.
Using Gronwall lemma we obtain the inequalities (1), (2) and (3) for the 2D case.

For the 3D case, the proof above is formal. To be rigourous, we need to derive first these estimates on the finite dimension approximation by Galerkin method. Then, as all the interpolation inequalities and Sobolev embeddings used in the 2D proof are valid in 3D, we get the same a priori estimates by lower semi-continuity of the norm in a reflexive space.

The estimates given in proposition 2 are not enough to pass to the limit when ε goes to zero. We need, in addition, an estimate on a fractional derivative in time of the velocity and an estimate on the pressure. These two estimates are given in the next propositions.

Proposition 3: For each $T>0$ there exists a constant c_{6} which depends only on T such that

$$
\int_{0}^{T}\left|D_{t}^{\gamma} V_{\varepsilon}(t)\right|^{2} d t \leqslant c_{6} \quad \forall \gamma<1 / 4
$$

Proof: For the sake of simplicity we only give here the proof in 2D using 3D valid Sobolev embeddings. For the 3D case the result comes via Galerkin approximation as it is pointed out in the previous proof.

We follow the ideas developed in [10] and [14]. Let \bar{V} be the extension of V by zero outside of $(0, T)$, we note $\mathscr{F}(\tilde{V})$ its Fourier transform in time and introduce the space
$\mathscr{H}^{i \prime}\left(0, T ; H_{D}^{1}(\Omega) ; \mathbb{L}^{2}(\Omega)\right)=$

$$
=\left\{V \in \mathbb{R}^{2}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega)\right) ; D_{t}^{\gamma} \tilde{V} \in L^{2}\left(0, T ; \mathbb{L}^{2}(\Omega)\right)\right\}
$$

where $\quad D_{t}^{\gamma} \tilde{V}(t)=\mathscr{F}^{-1}\left((i \tau)^{\gamma} \mathscr{F}(V)(\tau)\right)(t)$
We take $\Psi \in \mathbb{H}_{D}^{1}(\Omega)$ in $\left(\mathscr{F}_{\varepsilon}\right)$ and remark that

$$
\partial_{t} \tilde{V}_{\varepsilon}=\partial_{t} V_{\varepsilon}+V_{\varepsilon}(0) \delta_{0}-V_{\varepsilon}(T) \delta_{T}
$$

Then we apply the Fourier transform in time

$$
\begin{aligned}
& i \tau \int_{\Omega} \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) \cdot \Psi d x+\frac{1}{2} \int_{\Omega}\left(\mathscr{F}\left(\tilde{V}_{\varepsilon} \cdot \nabla \tilde{V}_{\varepsilon}\right) \cdot \Psi-\mathscr{F}\left(\tilde{V}_{\varepsilon} \otimes \tilde{V}_{\varepsilon}\right): \nabla \Psi\right) d x \\
& +\int_{\Omega}\left(a_{1} U_{0} \otimes \Psi: \mathscr{F}\left(\nabla \tilde{V}_{\varepsilon}\right)-\left(1-a_{1}\right) U_{0} \otimes \mathscr{F}\left(\tilde{V}_{\varepsilon}\right): \nabla \Psi\right) d x \\
& +\int_{\Omega}\left(a_{2} \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) \otimes \Psi: \nabla U_{0}-\left(1-a_{2}\right) \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) \otimes U_{0}: \nabla \Psi\right) d x \\
& +\int_{\Omega}\left(a_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-a_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) \mathscr{F}\left(\chi_{[0, T]}\right) d x \\
& +\frac{2}{R e} \int_{\Omega} D\left(\mathscr{F}\left(\tilde{V}_{\varepsilon}\right)\right): D(\Psi) d x-\int_{\Omega} \mathscr{F}\left(\tilde{q}_{\varepsilon}\right) \operatorname{div} \Psi d x \\
& +\beta \int_{\Gamma_{N}} \mathscr{F}\left(\left(\frac{1}{2} \tilde{V}_{\varepsilon} \cdot n+\left(1-a_{1}\right) \chi_{[0, T]} U_{0} \cdot n\right)^{+} \tilde{V}_{\varepsilon}\right) \cdot \Psi d \gamma \\
& +\beta \int_{\Gamma_{N}}^{\mathscr{F}}\left(\left(1-a_{2}\right) \tilde{V}_{\varepsilon} \cdot n+\left(1-a_{3}\right) \chi_{[0, T]} U_{0} \cdot n\right)^{+} U_{0} \cdot \Psi d \psi \\
& =\langle\mathscr{F}(\tilde{F}), \Psi\rangle_{\Gamma_{N}}+\frac{1}{(2 \pi)^{3 / 2} \int_{\Omega} V_{\varepsilon}(0) \cdot \Psi-V_{\varepsilon}(T) \cdot \Psi e^{-i \tau T} d x} \\
& i \tau \varepsilon \int_{\Omega} \mathscr{F}\left(\tilde{q}_{\varepsilon}\right) \pi d x+\int_{\Omega} \pi \operatorname{div}\left(\mathscr{F}\left(\tilde{V}_{\varepsilon}\right)\right) d x \\
& =\frac{\varepsilon}{(2 \pi)^{3 / 2} \int_{\Omega} q_{\varepsilon}(0) \cdot \pi-q_{\varepsilon}(T) \pi e^{-i \tau} d x}
\end{aligned}
$$

where $V \otimes W$ denotes the second order tensor whose components are given by $(V \otimes W)_{i j}=V_{i} V_{j}$.

Taking $(\Psi, \pi)=\left(\overline{\mathscr{F}\left(\tilde{V}_{\varepsilon}\right)}\right)(\tau),\left(\overline{\mathscr{F}\left(\tilde{q}_{c}\right)}(\tau)\right)$, we give an estimate of the cubic terms

$$
\begin{aligned}
& \left|\int_{\Omega}\left(\mathscr{F}\left(\tilde{V}_{\varepsilon} \cdot \nabla \tilde{V}_{\varepsilon}\right) \cdot \overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)-\mathscr{F}\left(\tilde{V}_{\varepsilon} \otimes \bar{V}_{\varepsilon}\right): \nabla \overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)\right) d x\right| \leqslant \\
& \leqslant\left|\mathscr{F}\left(\tilde{V}_{\varepsilon} \cdot \nabla \tilde{V}_{\varepsilon}\right)\right|_{\sigma / 5}\left|\overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)\right|_{\sigma}+\left|\mathscr{F}\left(\tilde{V}_{\varepsilon} \otimes \tilde{V}_{\varepsilon}\right)\right|\left|\nabla \overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)\right| .
\end{aligned}
$$

From estimates (1) and (2) and by interpolation, \bar{V}_{ε} is bounded in $L^{2 / s}\left(\mathbb{R} ; H^{*}(\Omega)\right)$ for any $0 \leqslant s \leqslant 1$.

So, by Sobolev embeddings, $V_{\varepsilon} \cdot \nabla \tilde{V}_{\varepsilon}$ is bounded in $L^{4 / 3}\left(\mathbb{R} ; L^{6 / 5}(\Omega)\right)$ and $\left|\mathscr{F}\left(\bar{V}_{\varepsilon} \cdot \nabla \tilde{V}_{\varepsilon}\right)\right|_{\sigma / 5}$ is bounded in $L^{4}(\mathbb{R})$. In the same way $\left|\overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)\right|_{\sigma}$ is bounded in $L^{2}(\mathbb{P})$.

For the second term, we take \tilde{V}_{ε} bounded in $L^{8 / 3}\left(\mathbb{R}, H^{3 / 4}(\Omega)\right)$ and consequently $\left|\mathscr{F}\left(\tilde{V}_{\varepsilon} \otimes \tilde{V}_{\varepsilon}\right)\right|$ is bounded in $L^{4}(\mathbb{R})$ and $\left|\nabla \overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)\right|$ is bounded in $L^{2}(\mathbb{R})$.

Finally, there exists a bounded function g_{1} in $L^{4 / 3}(\mathbb{R})$ such that

$$
\frac{1}{2}\left|\int_{\Omega} \mathscr{F}\left(\tilde{V}_{\varepsilon} \cdot \nabla \tilde{V}_{\varepsilon}\right) \cdot \overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right)-\mathscr{F}\left(\bar{V}_{\varepsilon} \otimes \bar{V}_{\varepsilon}\right): \nabla \overline{\mathscr{F}}\left(\tilde{V}_{\varepsilon}\right) d x\right| \leqslant g_{1}(\tau)
$$

for a.e. τ in \mathbb{R}.
Using the same technique and assuming $U_{0} \in \mathbb{H}^{2}(\Omega)$, we can show that there exist $g_{2} \in L^{1}(\mathbb{R}), g_{3} \in L^{1}(\mathbb{R})$ and $g_{4} \in L^{2}(\mathbb{R})$ such that

$$
\mid \int_{\Omega}\left(\alpha_{1} U_{0} \otimes \mathscr{F}\left(\tilde{V}_{\varepsilon}\right): \mathscr{F}\left(\nabla \tilde{V}_{\varepsilon}\right)-\left(1-\alpha_{1}\right) U_{0} \otimes\right.
$$

$$
\left.\otimes \mathscr{F}\left(\tilde{V}_{\varepsilon}\right): \nabla \mathscr{F}\left(\bar{V}_{\varepsilon}\right)\right) d x \mid \leqslant g_{2}(\tau) \text { for a.e. } \tau \text { in } \mathbb{R}
$$

$$
\mid \int_{\Omega}\left(\alpha_{2} \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) \otimes \mathscr{F}\left(\tilde{V}_{\varepsilon}\right): \nabla U_{0}-\left(1-\alpha_{2}\right) \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) \otimes\right.
$$

$\left.\otimes U_{0}: \nabla \mathscr{F}\left(\tilde{V}_{\varepsilon}\right)\right) d x \mid \leqslant g_{3}(\tau)$ for a.e. τ in \mathbb{R}

$$
\mid \int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \mathscr{F}\left(\bar{V}_{\varepsilon}\right)-\left(1-\alpha_{3}\right) U_{0}\right.
$$

$\left.\nabla \mathscr{F}\left(\tilde{V}_{\varepsilon}\right), U_{0}\right) \mathscr{F}\left(\chi_{[0, T]}\right) d x \mid \leqslant g_{4}(\tau)$ for a.e. τ in \mathbb{R}.

Now, by continuity of the trace operator and from estimates (1) and (2), we remark that $\left(\frac{1}{2} \bar{V}_{\varepsilon}, n+\left(1-\alpha_{1}\right) \chi_{[0, T]} U_{0}, n\right)^{+} \tilde{V}_{\varepsilon}$ is bounded in $L^{1}\left(\mathbb{R} ; L^{2}\left(\Gamma_{N}\right)\right)$; so there exists a function g_{5} in $L^{2}(\mathbb{R})$ such that
$\beta\left|\int_{\Gamma_{N}} \mathscr{F}\left(\left(\frac{1}{2} \tilde{V}_{\varepsilon} \cdot n+\left(1-\alpha_{1}\right) \chi_{[0, T]} U_{0} \cdot n\right)^{+} \tilde{V}_{\varepsilon}\right) . \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) d \gamma\right| \leqslant g_{5}(\tau)$
for a.e. τ in \mathbb{R}
and, in the same way, as $\left(\left(1-\alpha_{2}\right) \bar{V}_{\varepsilon} \cdot n+\left(1-a_{3}\right) \chi_{[0, T]} U_{0} \cdot n\right)^{+}$is bounded in $L^{2}\left(\mathbb{R} ; L^{2}\left(\Gamma_{N}\right)\right)$, there exists g_{6} in $L^{1}(\mathbb{R})$ such that
$\beta\left|\int_{\Gamma_{N}} \mathscr{F}\left(\left(\left(1-\alpha_{2}\right) \bar{V}_{\varepsilon} \cdot n+\left(1-\alpha_{3}\right) \chi_{[0, T]} U_{0} \cdot n\right)^{+}\right) U_{0} . \mathscr{F}\left(\tilde{V}_{\varepsilon}\right) d \gamma\right| \leqslant$ $\leqslant g_{6}(\tau)$ for a.e. τ in \mathbb{R}

Moreover, the Dirac terms and the second member are bounded by $g_{7} \in L^{2}(\mathbb{R})$. Thus, summing the equations and taking the imaginary part we obtain
(4) $|\tau|\left|\mathscr{F}\left(\tilde{V}_{\varepsilon}\right)(\tau)\right|^{2}+\varepsilon|\tau|\left|\mathscr{F}\left(\tilde{q}_{\varepsilon}\right)(\tau)\right|^{2} \leqslant h_{1}(\tau)+h_{2}(\tau)+h_{3}(\tau)$
for a.e. τ in \mathbb{R}
where $h_{1} \in L^{1}(\mathbb{R}), h_{2} \in L^{2}(\mathbb{R})$ and $h_{3} \in L^{4 / 3}(\mathbb{R})$.
To conclude, we first remark that there exist two constants d_{1} and d_{2} such taht for every $0 \leqslant \sigma \leqslant 1$

$$
|\tau|^{1-\sigma} \leqslant d_{1} \frac{|\tau|}{1+|\tau|^{\sigma}}+d_{2}
$$

so the inequality (4) gives

$$
\begin{aligned}
& \int_{\mathbb{R}}|\tau|^{1-\sigma}\left(\left|\mathscr{F}\left(\tilde{V}_{\varepsilon}\right)(\tau)\right|^{2}+\varepsilon\left|\mathscr{F}\left(\tilde{q}_{\varepsilon}\right)(\tau)\right|^{2}\right) d \tau \leqslant \\
& \leqslant d_{1}\left\{\int_{\mathbb{R}} \frac{h_{1}(\tau)}{1+|\tau|^{\sigma}} d \tau+\int_{\mathbb{R}} \frac{h_{2}(\tau)}{1+|\tau|^{\sigma}} d \tau+\int_{\mathbb{R}} \frac{h_{3}(\tau)}{1+|\tau|^{\sigma}} d \tau\right\} \\
& \quad+d_{2}\left\{\int_{R}\left|\mathscr{F}\left(\tilde{V}_{\varepsilon}\right)(\tau)\right|^{2}+\varepsilon\left|\mathscr{F}\left(\tilde{q}_{\varepsilon}\right)(\tau)\right|^{2} d \tau\right\}
\end{aligned}
$$

which is bounded independently of ε as soon as $1 / 2<\sigma \leqslant 1$.
Let us denote B the bounded operator defined by

$$
\begin{aligned}
& \mathbb{X}=\left\{V \in H^{1}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega)\right) ; V(T)=0\right\} \\
& \mathbb{R}=\left\{q \in H^{1}\left(0, T ; L^{2}(\Omega)\right) ; q(T)=0\right\} \\
& V \in \mathbb{X} \mapsto B(V)=\operatorname{div} V \in \mathbb{Y} .
\end{aligned}
$$

Following [6], we prove that B is an onto operator and so its adjoint ${ }^{t} B$ is of closed range. First we observe that, as the time t is a parameter, we only need to show that B is an onto operator from $\Vdash_{D}^{1}(\Omega)$ to $L^{2}(\Omega)$.

Let f be a given function in $L^{2}(\Omega)$, we build p in $H^{2}(\Omega)$ solution of

$$
\begin{gathered}
\Delta p=f \quad \text { in } \quad \Omega, \\
p=0 \quad \text { on } \quad \Gamma_{N} \\
\partial_{n} p=0 \quad \text { on } \Gamma_{0} \cup \Gamma_{D},
\end{gathered}
$$

and g defined by $g=0$ on $\Gamma_{0} \cup \Gamma_{D}, g=\nabla p$ on Γ_{N}. Then we set $h=g-\nabla p$ on $\partial \Omega$ that belongs to $H^{1 / 2}(\partial \Omega)$ by construction and checks

$$
\int_{\partial \Omega} h \cdot n d \gamma=0
$$

Then we find $W=W_{0}+\nabla p$ in $\mathbb{G}_{D}^{1}(\Omega)$ where W_{0} satisfies [6]

$$
\operatorname{div} W_{0}=0, \quad W_{0}=h \text { on } \partial \Omega
$$

PROPOSITION 4: There exists a constant c_{7} independent of ε such that

$$
\begin{aligned}
& \quad\left\|^{t} B q_{\varepsilon}\right\|_{\mathbb{X}^{\prime}} \leqslant c_{7} . \\
& \mathrm{M}^{2} \text { AN Modélisation mathématique et Analyse numérique } \\
& \text { Mathematical Modelling and Numerical Analysis }
\end{aligned}
$$

Proof: Let us integrate in time the first equation of $\left(\mathscr{F}_{\varepsilon}\right)$ for Ψ in \mathbb{X}

$$
\begin{aligned}
& -\int_{0}^{T} \int_{\Omega} V_{\varepsilon} \partial_{t} \Psi d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left(V_{\varepsilon} \cdot \nabla V_{\varepsilon} \cdot \Psi-V_{\varepsilon} \cdot \nabla \Psi \cdot V_{\varepsilon}\right) d x d t+ \\
& +\int_{0}^{T} \int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V_{\varepsilon} \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V_{\varepsilon}\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left(\alpha_{2} V_{\varepsilon} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V_{\varepsilon} \cdot \nabla \Psi \cdot U_{0}\right) d x d t \\
& +\int_{0}^{T} \int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) d x d t \\
& +\frac{2}{R e} \int_{0}^{T} \int_{\Omega} D\left(V_{\varepsilon}\right): D(\Psi) d x d t \\
& -\left\langle^{t} B q_{\varepsilon}, \Psi\right\rangle+\beta \int_{0}^{T} \int_{\Gamma_{N}}\left(\frac{1}{2} V_{\varepsilon} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V_{\varepsilon} \Psi d \gamma d t \\
& +\beta \int_{0}^{T} \int_{\Gamma_{N}}\left(\left(1-\alpha_{\varepsilon}\right) V_{\varepsilon} \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+} \Psi d \gamma d t \\
& =\int_{0}^{T}\langle F, \Psi\rangle_{\Gamma_{N}} d t+\int_{\Omega} V_{0} \Psi(0) d x .
\end{aligned}
$$

Using estimates (1) and (2) and Hölder inequality, it comes

$$
\left|\left\langle{ }^{t} B q_{\varepsilon}, \Psi\right\rangle\right| \leqslant c_{7}\|\Psi\|
$$

where c_{7} is a positive constant independent of ε.

2.3. Convergence

Let us recall that the embedding from the space

$$
\begin{gathered}
\mathscr{H}^{\gamma}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega) ; \mathbb{L}^{2}(\Omega)\right) \\
=\left\{V \in L^{2}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega)\right) ; D_{t}^{\gamma} V \in L^{2}\left(0, T ; \mathbb{L}^{2}(\Omega)\right)\right\}
\end{gathered}
$$

into $L^{2}\left(0, T ; \mathbb{L}^{2}(\Omega)\right)$ is compact ([10], [14]).
From propositions 2 and 3 we know that V_{ε} is bounded in

$$
\mathscr{H}^{\gamma}\left(0, T ; \mathbb{H}_{D}^{1}(\Omega) ; \mathbb{L}^{2}(\Omega)\right)
$$

so we can extract a sequence ε_{n} such that

$$
\begin{align*}
& V_{\varepsilon_{n}} \rightarrow V \quad L^{\infty}\left(0, T ; \mathbb{L}^{2}(\Omega)\right) \text { weak }^{*} \tag{5}\\
& V_{\varepsilon_{n}} \rightarrow V \quad L^{2}\left(0, T ; H_{D}^{1}(\Omega)\right) \text { weak } \tag{6}\\
& V_{\varepsilon_{n}} \rightarrow V \quad L^{2}\left(0, T ; \mathbb{R}^{2}(\Omega)\right) \text { strong and a.e. } \tag{7}
\end{align*}
$$

On the other hand, by proposition 2

$$
\begin{equation*}
\varepsilon_{n} q_{\varepsilon_{n}} \rightarrow 0 \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \text { weak }^{*} \tag{8}
\end{equation*}
$$

and by proposition 4 , as ${ }^{t} B$ has a closed range,

$$
\begin{equation*}
{ }^{t} B q_{\varepsilon_{n}} \rightarrow{ }^{t} B q \mathbb{X}^{\prime} \text { weak } \tag{9}
\end{equation*}
$$

Now, let us remark that by interpolation we deduce from (6) and (7) that

$$
\begin{equation*}
V_{\varepsilon_{n}} \rightarrow V \quad L^{2}\left(0, T ; \mathbb{H}^{s}(\Omega)\right) \text { strong for any } 0<s<1 \tag{10}
\end{equation*}
$$

and for $s=3 / 4$ we get

$$
V_{\varepsilon_{n}} \rightarrow V \quad L^{2}\left(0, T ; \mathbb{L}^{4}(\Omega)\right) \text { strong ; }
$$

then

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left(V_{\varepsilon_{n}} \cdot \nabla V_{\varepsilon_{n}} \Psi-V_{\varepsilon_{n}} \cdot \nabla \Psi \cdot V_{\varepsilon_{n}}\right) & d x d t \rightarrow \\
& \rightarrow \int_{0}^{T} \int_{\Omega}(V \cdot \nabla V \cdot \Psi-V \cdot \nabla \Psi \cdot V) d x d t
\end{aligned}
$$

For $s=5 / 6$ in (10) and using the continuity of the trace operator in $H^{1 / 3}\left(\Gamma_{N}\right)$ we obtain

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Gamma_{N}}\left(\frac{1}{2} V_{\varepsilon} \cdot n+\left(1-\alpha_{1}\right)\right.\left.U_{0} \cdot n\right)^{+} V_{\varepsilon} \cdot \Psi d \gamma d t \rightarrow \\
& \rightarrow \int_{0}^{T} \int_{\Gamma_{N}}\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V \cdot \Psi d \gamma d t \\
& \mathrm{M}^{2} \text { AN Modélisation mathématique et Analyse numérique } \\
& \text { Mathematical Modelling and Numerical Analysis }
\end{aligned}
$$

in the same way we get convergence for the other boundary term.
Finally, as the other terms are linear, there are no difficulties to pass to the limit.

Now, integrating in time the second equation of $\left(\mathscr{F}_{\varepsilon}\right)$ for π in \mathbb{Y}

$$
-\varepsilon \int_{0}^{T} \int_{\Omega} q_{\varepsilon} \frac{\partial \pi}{\partial t} d x d t+\int_{0}^{T} \int_{\Omega} \pi \operatorname{div} V_{\varepsilon} d x d t=\varepsilon \int_{\Omega} q_{0} \pi(0) d x
$$

so according to (3), we get at the limit

$$
\int_{0}^{T} \int_{\Omega} \pi \operatorname{div} V d x d t=0 .
$$

In conclusion, we have shown
THEOREM 1: Let Ω be a connected bounded domain in $\mathbb{R}^{N}(N \leqslant 3)$ with smooth boundaries, then for U_{0} in $\mathbb{H}^{2}(\Omega), V_{\text {in }}$ in \mathbb{H}_{0} and F in $\mathbb{H}^{-1 / 2}\left(\Gamma_{N}\right)$, there exists at least one solution (V, q) in $\mathbb{V} \times \mathbb{Q}$ of (\mathscr{F}).

2.4. Uniqueness in 2D

As it is well-known, the uniqueness result is related to the regularity of $\partial_{t} V$. For $\Psi \in \mathbb{X}_{0}$, we get from (\mathscr{F})

$$
\int_{\Omega} \partial_{t} V \cdot \Psi+\frac{1}{2}(V \cdot \nabla V \cdot \Psi-V \cdot \nabla \Psi \cdot V) d x
$$

$$
+\int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V\right) d x
$$

$$
+\int_{\Omega}\left(\alpha_{2} V \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V \cdot \nabla \Psi \cdot U_{0}\right) d x
$$

$$
+\int_{\Omega}\left(\alpha_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{3}\right) U_{0} \cdot \nabla \Psi . U_{0}\right) d x
$$

$$
+\frac{2}{R e} \int_{\Omega} D(V): D(\Psi) d x
$$

$$
+\beta \int_{\Gamma_{N}}\left(\frac{1}{2} V \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V \cdot \Psi d \gamma
$$

$$
+\beta \int_{\Gamma_{N}}\left(\left(1-\alpha_{2}\right) V \cdot n+\left(1-\alpha_{3}\right) U_{0} . n\right)^{+} U_{0} . \Psi d \gamma=\langle F, \Psi\rangle_{\Gamma_{N}}
$$

Then we define the following operators from $H_{D, 0}^{1}(\Omega)$ into $H_{D, 0}^{1}(\Omega)^{\prime}$ by :

$$
\begin{aligned}
& \langle\mathscr{A} V, \Psi\rangle=\frac{2}{R e} \int_{\Omega} D(V): D(\Psi) d x \\
& \quad+\int_{\Omega}\left(a_{1} U_{0} \cdot \nabla V \cdot \Psi-\left(1-a_{1}\right) U_{0} \cdot \nabla \Psi \cdot V\right) d x \\
& \quad+\int_{\Omega}\left(a_{2} V \cdot \nabla U_{0} \cdot \Psi-\left(1-a_{2}\right) V \cdot \nabla \Psi \cdot U_{0}\right) d x
\end{aligned}
$$

$\langle\mathscr{B}(V, V), \Psi\rangle=\frac{1}{2} \int_{\Omega}(V \cdot \nabla V \cdot \Psi-V \cdot \nabla \Psi \cdot V) d x$,
$\langle\mathscr{S}(V), \Psi\rangle=\beta \int_{r_{N}}\left(\frac{1}{2} V \cdot n+\left(1-a_{1}\right) U_{0} \cdot n\right)^{+} V \cdot \Psi d \gamma$
$+\beta \int_{\Gamma_{N}}\left(\left(1-a_{2}\right) V \cdot n+\left(1-a_{3}\right) U_{0} \cdot n\right)^{+} U_{0} \cdot \Psi d \gamma$,
$\langle\mathscr{G}(V), \Psi\rangle=\int_{\Omega}\left(a_{3} U_{0} \cdot \nabla U_{0} \cdot \Psi-\left(1-a_{3}\right) U_{0} \cdot \nabla \Psi \cdot U_{0}\right) d x-\langle F, \Psi\rangle_{\Gamma_{N}}$.

Then we write :

$$
\partial_{t} V+\mathscr{A} V+\mathscr{B}(V, V)+\mathscr{S}(V)+\mathscr{G}(V)=0
$$

From existence theorem and regularity properties on V we deduce that for 2D dimension space, all these terms belong to $L^{2}\left(0, T ; \mathbb{H}_{D, 0}^{1}(\Omega)^{\prime}\right)$, and then $\partial_{t} V$ belongs to $L^{2}\left(0, T ; \mathbb{H}_{D, 0}^{1}(\Omega)^{\prime}\right)$. Then we can prove the following result :

THEOREM 2: Let $(V, q) \in \mathbb{V} \times \mathbb{Q}$ be a solution of (\mathscr{F}). If the space dimension is equal to two, then V is unique.

Proof: Let $\left(V_{1}, q_{1}\right)$ and $\left(V_{2}, q_{2}\right)$ be two solutions of ($\left.\mathscr{F}\right)$, we set $V=V_{2}-V_{1}$ and $q=q_{2}-q_{1}$. Then (V, q) satisfies

$$
\left\langle\partial_{t} V, \Psi\right\rangle+\frac{1}{2} \int_{\Omega}\left(V_{2} \cdot \nabla V+V \cdot \Psi+V \cdot \nabla V_{1} \cdot \Psi-V_{2} \cdot \nabla \Psi \cdot V-V \cdot \nabla \Psi-V_{1}\right) d x
$$

$$
+\int_{\Omega}\left(\alpha_{1} U_{0} \cdot \nabla V \cdot \Psi-\left(1-\alpha_{1}\right) U_{0} \cdot \nabla \Psi \cdot V\right) d x
$$

$$
+\int_{\Omega}\left(\alpha_{2} V \cdot \nabla U_{0} \cdot \Psi-\left(1-\alpha_{2}\right) V \cdot \nabla \Psi \cdot U_{0}\right) d x
$$

$$
+\frac{2}{R e} \int_{\Omega} D(V): D(\Psi) d x-\langle q, \operatorname{div} \Psi\rangle_{\Omega}
$$

$$
+\beta \int_{\Gamma_{N}}\left(\frac{1}{2} V_{2} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+} V \cdot \Psi d \gamma
$$

$$
+\beta \int_{\Gamma_{N}}\left\{\left(\frac{1}{2} V_{2} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+}\right.
$$

$$
\left.-\left(\frac{1}{2} V_{1} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)^{+}\right\} V_{1} \cdot \Psi d \gamma
$$

$$
+\beta \int_{\Gamma_{N}}\left\{\left(\left(1-\alpha_{2}\right) V_{2} \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+}\right.
$$

$$
\left.-\left(\left(1-\alpha_{2}\right) V_{1} \cdot n+\left(1-\alpha_{3}\right) U_{0} \cdot n\right)^{+}\right\} U_{0} \cdot \Psi d \gamma=0 .
$$

$$
\forall \Psi \in \mathbb{H}_{D, 0}^{1}(\Omega)
$$

Then, for $\Psi=V$, we get the following inequality

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|V|^{2}+\frac{2 \eta}{R e}|\nabla V|^{2} \leqslant \\
& \leqslant \frac{1}{2}|V|_{4}^{2}\left|\nabla V_{1}\right|+\frac{1}{2}|V|_{4}\left|V_{1}\right|_{4}|\nabla V|+\left(2-\alpha_{2}\right)\left|U_{0}\right|_{4}|V|_{4}|\nabla V|+\alpha_{2}|V|_{4}^{2}\left|\nabla U_{0}\right| \\
& \quad+\beta\left|\left(\frac{1}{2} V_{2} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right)\right|_{3, \Gamma_{N}}|V|_{3, I_{N}}^{2}+\frac{\beta}{2}|V \cdot n|_{3, I_{N}}\left|V_{1}\right|_{3, \Gamma_{N}}|V|_{3, I_{N}} \\
& \quad+\beta\left(1-\alpha_{2}\right)|V|_{3, \Gamma_{N}}\left|U_{0}\right|_{3, \Gamma_{N}}|V|_{3, \Gamma_{N}}
\end{aligned}
$$

vol. $30, n^{\circ} 7,1996$
as the function $a \rightarrow a^{+}$is a one-lipschitz function.
By Sobolev embeddings and interpolation [1] we have

$$
|V|_{p} \leqslant c\|V\|_{s} \leqslant c^{\prime}|V|^{1-s}|\nabla V|^{s} \quad \text { with } \quad s=\frac{p-2}{p} .
$$

Then using in addition the continuity of the trace operator we get

$$
|V|_{q, \Gamma_{N}} \leqslant c\|V\|_{\sigma, \Gamma_{N}} \leqslant c^{\prime}\|V\|_{\sigma+1 / 2} \leqslant c^{\prime \prime}|V|^{1 / 2-\sigma}|\nabla V|^{\sigma+1 / 2} \text { with } \sigma=\frac{q-2}{2 q} .
$$

So we have the following estimate

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|V|^{2}+\frac{2 \eta}{R e}|\nabla V|^{2} \leqslant \\
& \leqslant c_{8}\left(\left|\nabla V_{1}\right|+\left|\nabla U_{0}\right|\right)|V||\nabla V|+c_{9}\left(\left|V_{1}\right|_{4}+\left|U_{0}\right|_{4}\right)|V|^{1 / 2}|\nabla V|^{3 / 2} \\
& \quad+c_{10}\left(\left|\frac{1}{2} V_{2} \cdot n+\left(1-\alpha_{1}\right) U_{0} \cdot n\right|_{3, \Gamma_{N}}+\left|V_{1}\right|_{3, \Gamma_{N}}+\left|U_{0}\right|_{3, I_{N}}\right)|V|^{2 / 3}|\nabla V|^{4 / 3} .
\end{aligned}
$$

Now, as V belongs to \mathbb{V}_{0} and using Young inequality, we show that there exists a function $h_{4}(t)$ belonging to $L^{1}(0, T)$ such that

$$
\frac{d}{d t}|V|^{2}+\frac{2 \eta}{R e}|\nabla V|^{2} \leqslant h_{4}|V|^{2}
$$

The proof follows using Gronwall lemma.

3. PRACTICAL EXAMPLE

To show the robustness and accuracy of our boundary conditions, we apply them to compute the flow behind a cylinder in a channel (see fig. 2).

Figure 2. - Domain Ω for the channel.
M^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

In this case, the flow is set equal to Poiseuille flow (U_{P}, p_{P}) upstream and we can take $\left(U_{0}, p_{0}\right)=\left(U_{P}, p_{P}\right)$ and $\sigma\left(U_{0}, p_{0}\right)=\sigma\left(U_{P}, p_{P}\right)$ downstream. Indeed, this is true if Γ_{N} is far enough from the obstacle and numerical tests show that this is still valid when Γ_{N} is closer.

So the problem (\mathscr{P}) reads

$$
\begin{aligned}
& \partial_{t} U+(U . \nabla) . U-\operatorname{div} \sigma(U, p)=0 \text { in } \Omega \times(0, T) \\
& \operatorname{div} U=0 \quad \text { in } \Omega \times(0, T) \\
& U(x, 0)=0 \text { in } \Omega \\
& (\mathscr{P}) U(., t)=0 \quad \text { on } \quad \Gamma_{0} \times(0, T) \\
& U(., t)=U_{P} \quad \text { on } \quad \Gamma_{D} \times(0, T) \\
& \sigma(U, p) \cdot n-\frac{1}{2} \Theta\left(U \cdot n+\left(1-2 \alpha_{1}\right) U_{p} \cdot n\right)\left(U-U_{P}\right)- \\
& -\Theta\left(\left(1-\alpha_{2}\right) U \cdot n+\left(\alpha_{2}-\alpha_{3}\right) U_{P} \cdot n\right) U_{P}=\sigma\left(U_{P}, P_{P}\right) \cdot n \\
& \text { on } \Gamma_{N} \times(0, T) .
\end{aligned}
$$

For numerical tests, we set $\alpha_{1}=1 / 2, \alpha_{2}=\alpha_{3}=1, \theta(a)=-a^{-}$and $p_{P}=0$ on Γ_{N} (see [3] for more details). On figure 3, we see that the solution obtained on a troncated domain is very closed to the one obtained on a larger one at the same time. Moreover, these conditions are truly robust as we can compute chaotic solutions at high Reynolds numbers (fig. 4), which is not the case with the linear condition (0) that produces strong reflections for the same time step discretisation (fig. 5).

CONCLUSIONS

We have established a new family of open boundary conditions that lead to a well-posed problem for incompressible Navier-Stokes equations. These conditions are applied to compute the flow behind a cylinder in a channel. Numerical tests show that they are very robust and accurate as they do not induce any reflections downstream even when strong vortices cross the artificial boundary. Finally, these conditions are suitable to simulate the transition to turbulence in an open domain.

Acknowledgements. The authors thank the referees for their fruitful comments that enable them to improve significantly the understanding of this paper.

Figure 3. - Stream lines and vorticity lines at $R e=1000$.

Figure 4. - Chaotic solution at $\mathbf{R e}=\mathbf{1 0} 000$.
M^{2} AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

Figure 5. - Comparison of the linear (top) and the full condition (bottom) at $\mathrm{Re}=\mathbf{1 0} \mathbf{0 0 0}$.

REFERENCES

[1] R. A. Adams, 1975, Sobolev spaces, Academic press, New-York.
[2] C. Bègue, C. Conca, F. Murat and O. Pironneau, 1987, A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, C. R. Acad. Sci. Paris, 304 série I, pp. 23-28.
[3] Ch.-H. BRUNEAU and P. FABRIE, 1994, Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. for Num. Methods in Fluids, 19, pp. 693-705.
[4] C. CONCA, 1984, Approximation de quelques problèmes de type Stokes par une méthode d'éléments finis mixtes. Numer. Math., 45, pp. 75-91.
[5] G. Duvaud, J. L. Lions, 1972, Les inéquations en mécanique et en physique, Dunod.
[6] V. Girault et P. A. Raviart, 1986, Finite elements method for Navier-Stokes equations, Springer Series in Computational Mathematics.
[7] P. M. Gresho, 1991, Incompressible fluid dynamics : Some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, pp. 413-453.
[8] L. HALPERN, 1986, Artificial boundary conditions for the linear advection diffusion equation. Math. Comp., 46, pp. 425-438.
[9] L. HALPERN and M. SChATZMAN, 1989, Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal., 20, pp. 308-353.
[10] J. L. LIONS, 1979, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris.
vol. $30, \mathrm{n}^{\circ} 7,1996$
[11] R. Peyret and B. Rebourcet, 1982, Développement de jets en fluides stratifiés, Journal de Mécanique Théorique et Appliquée, 1, pp. 467-491.
[12] O. Pironneau, 1986, Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes, C. R. Acad. Sci. Paris, 303, série I, pp. 403-40.
[13] R. Temam, 1993, Navier-Stokes Equations and Nonlinear Functional Analysis, Regional conference series in applied mathematics.
[14] R. Temam, 1979, Navier-Stokes Equations and numerical Analysis, 2nd ed. North-Holland, Amsterdam.

[^0]: (*) Manuscript received February 14, 1995, revised July 25, $1996 . ~_{\text {(}}$
 ${ }^{(}{ }^{\text {' }}$) Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 33405 Talence, France.
 (${ }^{2}$) LEPT-ENSAM-URA 873.

