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MATHEMATICAL MODELLING AND NUHER1CAL ANALYSIS
MODÉLISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 30, n° 4, 1996, p 445 à 465)

CONNECTION BETWEEN FIN1TE VOLUME AND MIXED FINITE
ELEMENT METHODS (*)

by Jacques BARANGER (*), Jean-François MAITRE (2) et
Fabienne OUDIN (*)

Abstract — For the model problem with Laplacian operator, we show how to produce
cell-centered finite volume schemes, starting from the mixed dual formulation discretized with the
Raviart-Thomas element of lowest order

The method is based on the use of an appropnate intégration formula (mass lumping) allowing
an explicit élimination of the vector variables The analysis of the fimte volume scheme
(wellposed-ness and error bounds) is directly deduced from classical results of mixed finite
element theory, which is the main interest of the method

We emphasize existence and proper hes of the diagonahzing intégration formulas, specially in
the case of N-dimensional simphcial éléments

Résumé —Pour le problème modèle avec l'opérateur laplacien, nous montrons comment
construire un schéma volumes finis, en partant de la formulation mixte duale discrétisée avec
l'élément de Raviart-Thomas de plus bas degré

La méthode repose sur l'utilisation d'une formule d'intégration numérique appropriée
(condensation de masse) permettant l'élimination explicite du champ vectoriel L'analyse du
schéma volumes finis (existence-unicité, borne d'erreur) se déduit directement des résultats
classiques de la théorie des éléments finis mixtes, ce qui constitue l'intérêt principal de la
démarche

Un intérêt particulier est porté à l'existence et aux propriétés de formules d'intégration
diagonahsantes, cela particulièrement pour le cas des éléments simphciaux en dimension N
quelconque

1. INTRODUCTION

Let Q be an open bounded polygonal set of RN (where N = 1, 2 or 3), and
consider the Dinchlet model problem

-div (gradw) =ƒ in Q, u = 0onr=SQ (1)
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446 J. BARANGER

and its mixed dual formulation

(P)

find O , w) e H(div ;Q) x L (12) suchthat

/?. q dx + div 3 . u dx = 0 \/q e H( div ; Q ) = Q

divp.vdx =- f.vdx Vt? e L2(^2

Ji3 ~ Ji3

Using a mesh ©h of Q ( Q = (^J ATV we consider the approximation of

find (77̂ , uh ) such that

divpfc.vAdr = - / . ü A

with :

0h) ,

iv ; O ) ; qh\K e lïr.C AT), VAT e 6>J ,

where 7?r,(AT) is the Raviart-Thomas space of smallest order.
It is well known that (ƒ>) (resp. (Ph)) has a unique solution (p,u)

(resp. (ph, uh)) satisfying (under regularity assumptions) : ~

(2)

(see Brezzi-Fortin [3], Raviart-Thomas [14]).
Recent works on finite volume methods applied to the same problem are :

W. Hackbusch [9] for the box methods and Morton-Suli [12] for the cell vertex
methods. R Emonot [1] has studied finite volumes using polynomials with
degree greater than 1.
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FINITE VOLUME AND MIXED FINITE ELEMENT METHODS 447

(Ph) présents implicitly a finite volume aspect: in équation (1), we can
consider as test function the characteristic function of element K, which gives
the intégration on K of the équation of conservation div p + ƒ = 0. But finite
volume schemes for (1) are usually expressed with the only unknowns ui

approximating u.

The aim here is to show that, from the mixed finite element scheme of (1),
we can obtain a finite volume scheme with the unknows ( uK )K. This needs the
élimination of the unknows (/?,),- Using a technique similar to that of
Haugazeau-Lacoste [10], we show that there exists a numerical intégration
formula on K of the form 2 afff(/**) ff (#/*) (where <pf(ph) is the flux of

ph through face ƒ), exact for ph and qh piecewise constant. We consider the
approximate discrétisation corresponding to this intégration formula, that is :

find (ph, üh ) e QhxVh such that

~~ + f diwqh.ühdx = 0 Vqhe Qh

Ja ~ ~

J
divph.vhdx =-\ g.vhdx

where Fh dénotes the set of all faces of the mesh &h.

The approximate mass matrix being diagonal, we can eliminate the gradient
unknowns to obtain a finite volume scheme with the approximate values of u
as the only unknowns.

The interest of this method is that, thanks to gênerai results of mixed finite
element methods, we can obtain results of existence and unicity, and also error
estimations from that of type (2) (see [3] or [15]). Concerning this method, we
have been aware recently, after having achieved this present study, that it had
been already proposed by A. Weiser and M. F. Wheeler [16], but for the only
case of the rectangular mesh, and apparently without detailed proof.

For our proof, we shall use a Theorem of Roberts-Thomas ([15]), which
compares the solution (<p, X) e ^ x M of the problem (P{ ) :

M,
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448 J- BARANGER

and the solution (<ph, A*) e WhxMh of the discrete problem (P* h) using
approximated linear and bilinear forms, with Wh<zW and Mha M :

This Theorem is the following :

THEOREM 1 : Suppose that a( . , . ) ( resp.b{ . , . ) ) is a continuons bilin-
ear form on W x W (resp.WxM) with A {resp.B) as constant of
continuity. Let Ah be a number such that :

AhII <PhII wW VhII vn y<Ph e Wv V ^ e Wh -

Suppose further that there exists numbers ah > 0 and Ph > 0 such that :

ah{ vh, vh)>cch|| vh||
2

W, Wh e{whe Wh, bh( w , , ^ ) = 0, V ^ e Mh)

and

inf sup bh(it/h,vh)*£ ph.
{fihGMbt 1 | ^ | IM=1} { n e Wb, I |^IU=1}

Then there exists a constant C dependent only on A, B, Ah, ah and fih such
that (cp, À) and (tp*h, A* ) the solutions of (Px) and (P*lh) satisfy :

\\<P-<PI\\W+ I U - ^ I I M

^ Ci inf lk~^J|w+ sup
I w {

• inf ( m-^j iM-

Remark : in this study, being interested in the numerical intégration for a,
that is the error a( . , . ) - ah{ . , . ), we shall assume b~bh, f = fh,

In Section 2, we study briefly the problem in the one-dimensional case ; we
find, using the trapezoidal rule, a scheme obtained with a finite différence
method (see [6]) with an error estimation of type (2). We can remark that, for
this simple l.D case, it is possible to eliminate directly the gradient unknowns,
without using numerical intégration, obtaining for the Laplacian an other
scheme of finite différence type, but on a staggered grid.

In Section 3, we study the problem in two-dimension with a triangular
mesh. We give a method of construction of the numerical intégration, exact for
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FINITE VOLUME AND MIXED FINITE ELEMENT METHODS 449

constant fields, to obtain an error estimation of type (2). The resulting scheme
is exactly the fini te volume scheme given by R. Herbin [11], As a remark, we
give the resuit for a rectangular mesh.

In Section 4, we consider the case of higher dimensions (N ^ 3 ) . We
show that the process used for the two-dimensional case does not work in
gênerai. In the example of a tetrahedral 3-D mesh, the construction of an
intégration formula exact for constant fields and diagonalizing the mass matrix
is only possible in the case of special tetrahedra, among which regular ones.

2. ONE-DIMENSIONAL CASE

In this case, the Raviart-Thomas element of smallest order used the gradient
space RT}(I) — P^I) (where I is the interval of length hj), and its degrees
of freedom are the values at vertices of the mesh I. We note by a( . , . ) the
bilinear form associated to the elementary mass matrix, that is to say :

( £ ? ) = J p . q= p. qdx.

PROPOSITION 1 : There exists a diagonal matrix A!
h with associated bilinear

form ah( . , . ) satisfying for ail poe PQ(I) : a\po,po) = ah(pQypQ). More-
over, for ail ph and ail qh in RT^I) :

where | . jƒ/'(/> dénotes the semi norm of Hl(I).

Proof: We can choose the numerical intégration corresponding to the
trapezoidal rule, which is exact for the constants and uses values at the vertices
of I, that is to say the degrees of freedom of RTX(I) ; the elementary matrix

is then given by : Al
h = diag ( — hp x hf ) and the result is easy to obtain since

ph and qh are in PX(I).
Denoting by (M,p ) the solution of problem (P) and (ü h , p h ) the solution

of problem (Ph), where the numerical intégration is that corresponding to the
matrix A^, we have the following result :

PROPOSITION 2 : Problem (Ph) has a unique solution, and there exists a
constant C such that, if (u,p) G H\Q)X (H2(Q))2, then:

Proof : It is a direct conséquence of Theorem 1 of Roberts-Thomas [15], the
hypotheses of which are easily verified, and of the former proposition.

vol. 30, n° 4, 1996



450 J BARANGER

n

Remark : defining Ik = [xk, xk+l] (where [0, 1 ] = {J Ik), hL ~
k=\

xk+\ ~x*> anc* denoting uk+m, the unknown in Ik, the scheme obtained af ter
the élimination of gradients ph is :

= - Kf» VA: e {1,.... n)

where

i- in K * l (3)

"l/2 = "„ + 3/2 = °

and

This scheme is in fact the classical three points scheme obtained by cell
centered finite différences method (see for example [6])

3. TWO-DIMENSIONAL CASE

We have studied both cases of rectangular and triangular meshes, but we
will detail only the study of the last one.

For rectangular meshes, different diagonalismg intégration formulas are
exact for constant éléments of RTV among which the trapézoïdal rule. The
corresponding finite différence scheme on each rectangle is a 5 points one, the
approximation of the fluxes being the natural ones. The error bound O(h) is
still valid, but cannot be obtained by Theorem 1.

Let us study the case of a triangular mesh of Q We have •
Q = \^J T, where the T*s are triangles. We suppose that Oh is in a regular

family of triangulations of £2, in the sense that there exists a constant
a > 0 independent of h such that :

hT
max -ö- ^ o,
r e &h oT

where hT is the diameter of T, and ôT is the diameter of the inscribed circle of
T,

For each T, we shall use the following notations :
• |T| : area of 7 ;

• at : * vertex of Z with coordinates (x[9yt) (ie {l, 2, 3}) ,
• ft : face opposite to vertex at, with length \ft | ,
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FINITE VOLUME AND MIXED FINITE ELEMENT METHODS 451

• nl : unit exterior normal to face ft ;
• 9t : angle at vertex at ;

For any triangle % the Raviart-Thomas space of smallest order is defined
by:

y
The local shape functions {pX^h 2 3} °f a n v triangle T, associated to the

fluxes {^/(}/e{ii2,3} through facês {/l}ie{Ii2,3}» a r e ciefined by :

(4)

We dénote aT( . , • ), the bilinear form on Q x Q defined by :

àr(p,q)=\ p(x,y).q(x.y)dxdy .

We have the following results :

PROPOSITION 3 : There exists a unique diagonal matrix, denoted AT
h, such

that ah{ . , . ), its associated bilinear form, satisfies :

for all p0 e ( Po( T) f , aT(p0, p0 ) = aT
h(p0, p0 ) . (5)

vol. 30, n° 4, 1996
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This matrix is given by {AT
h}n = izcot (6t), where 0t is the angle at vertex

at, and aT
h{ . , . ) is given by :

3

with ct = cot (#,).

Proof: see Section 4.

Remark : relation (5) implies the more gênerai one :

V(p0. go > e ( ̂ o( r ) )2 X ( ̂ o( T) f, a\p0, q0 ) = aT
h(p0, q0 ) .

PROPOSITION 4 : 77ie bilinear form aT
h of Proposition 3 satisfies :

/or all ph and qh in RT^T), with e(hT)=h2
T/4S if T is equilateral

( O f O 1 "'T1 / O -̂

hT/ ÔT = 3 J «rt̂ i e(hT) =-«- Va — 3 + O(hT) else, where a is the

constant of the regular family of meshes (hT/ÖT ^ er).

Proof: For /?̂  in RT^T), we can write :
171

P*=A) + #>I+^2+P3)> With A = V d i v ( ^ ) (8 )

3

and /?0 = ax pl + a2 /?2 + a3 /?3 with 2 a, = 0.

For qh in RT{(T), we can write the same relations, replacing P by y and
( a , ) b y (<5().

It is easy to verify the following equalities :

where e = (1 , 1, 1), and, introducing the barycenter gT and the gyration
radius pT of 7̂  to obtain :
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3 9 2

It can be shown that 2 c = -r^r pr which implies :

453

i V c -—
2 ^ ' ~ 21 71

Finally, we have :

since a^(p0, ^0 ) = ar(p0, ̂ 0) .

For the ff(div ; 7)-norms, we have :

that is :

(10)

and, similarly :

Thanks to (9), (10), (11), and to prove (7), we have to solve or bound the
following supremum :

SUP "7 Z r

,«MM} (VA^ «
Q rt9\ ï/2 / T 7 Q 9 \ l /2 "

To eliminate the constraints 2 <*, = 0. 2 £• = 0, we write

a =

vol. 30, n° 4, 1996
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454 J. BARANGER

with ö, ö frees in U2, and obtain :

T AT 1 /
â , e AhS = ^ ( c j — c 3 , c 2 — c3) S ,

, ÔTAT
hô = \ÖT CÔ ,

with

/c,+c3 c3 \ / c 2 + c3 - c 3 \

= l c c + c i a n d C = \ - c c + c ) '

since
Then the solution of (12) is given by the spectral radius of the following

3 x 3 matrix :

J L Q Q
9
0

2 C"

9 p\ \{cx-c3) \{c2-c3)A\T\

which eigenvalues are 0 and the roots of

(13)

The spectral radius of (13) is bounded by :

since 1 - 9
c, c-,

2 , 2

12.32 + 96

since
This bound implies (7), proving Proposition 4.
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FINITE VOLUME AND MIXED FINITE ELEMENT METHODS 455

We consider now the approximate problem (Ph), with :

- - TG 0h

and a£( • , . ) constructed in Proposition 3.

PROPOSITION 5 : Problem (Ph) has a unique solution (ph, üh) ; moreover,
for a regular family of meshes, there exists a constant C such that :

l lp -£ / JUdiv ;^ )+ H*- t t J I L 2 ( o ) < Ch(\u\]Q+ | | £ | | l t O + \\dlv(p)\\lQ)

where (/?, u), the solution to ( P ) i^ assumed to verify :

Proof : We use again Theorem 1 of Roberts-Thomas [15] and begin with
verify ing its hypotheses, that is the existence of constants, independent of h,
for continuity and ellipticity of ah.

For the continuity of ah{ . , . ), we deduce from Proposition 4 :

and by summation on all triangles 7, that the constant of continuity is bounded
uniformly on h.

For the ellipticity of ah( . , . ) on

h ' ' h h J *

we have for qOh element of Qh :

_0/i' k J^ _0h

or equivalently :

qOh)dxdy = O, V 7 E 0A ,div(^0
JT ~

vol. 30, n° 4, 1996
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That gives, by Proposition 3 :

which gives 1 for the constant of ellipticity of ah{ . , . ).
Finally, we have to check the inf-sup condition on b{ . , . ), which is easy

to do according to Theorem4 of Raviart-Thomas [14].
Then, Theorem 1 gives a resuit of existence and unicity of the solution

(ph, üh) of problem (Pft), with an error estimation of type :

\\P_-hh\\Q + \\u-

By Proposition 4, after summation on all triangles T, we have :

$& uJ~Q
 2 " q-h "G> q-h e Qh

where h = sup hT.
T

According to a resuit of Raviart-Thomas [14] for éléments of # 7 ^ 71), there
ists a constant C3 >

 l 2

divp e Hl(Q), then :
exists a constant C3 > 0, independent of h such that, if p e (Hl(Q))2 with

l

On the other hand, an application of a resuit of Ciarlet-Raviart [4] (Theo-
rem 5) gives for some constant C4 independent of h :

These three last results imply the error estimation given in Proposition 5.
Finally, we will emphasize the explicit scheme corresponding to the unique

« mas s lumping » of Proposition 3. To describe the finite différence équation
in u associated with triangle 7, we introducé the following notations :

• Ti is the triangle sharing face ff with T ;
• C ( resp. Ct ) is the center of the circumscribed circle to T ( resp. Ti ) ;
• di (resp. d\) is the distance between center C (resp. C.) and middle

mi of face ft ;
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• c (resp. c\) is the cotangent of the angle of T (resp. T.) opposite of

fr.
• Di is the distance between C and Cr

By simple geometrical properties, we have the following relation :

that is D,»l|<:, + c!| \f,\.

Figure 2.

For problem (Ph), with the chosen orientation of the normals, the équation
associated with T can be written :

where each flux <pf. (though face f. ) satisfies the simple équation :

thanks to the mass-lumping of Proposition 3.
Depending on the sign of c- + c\, three cases are to be considered for the

approximation of <p. given by (15) :
• Case 1 : ci -f c\ > 0.

vol. 30, n° 4, 1996
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That means that the pair ( T, Tt ) vérifies Delaunay property ( T. is not
included in the circumscibed circle of T, or the sum of the angles opposite of
fi is strictly smaller than n). Here (15) gives :

uT — uT

which is the natural finite différence approximation associating values uT

(resp. uT_) to point C (resp. C-).

Figure 3.

• Case 2 : . + c\ = 0.\
That means that T and Té have the same circumscribed circle (C( = C), or

that the sum of the angles opposite to ft is exactly n. Here (15) implies
uT = uT, that is only one value for the quadrangular cell T \J Ti to which
corresponds the conservation équation obtained by summing those of T and
T. (voir figure 4).

• Case 3 : c. + c\ < 0.
That means that 7. is included in the interior of the circumscribed circle of

T, or the sum of the angles opposite to f{ is greater than n. Here (15) gives :

which has the opposite sign of a natural approximation ! (voir figure 5).
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Figure 4.

Figure 5.

Remark : in the three cases, it may happen that an angle opposite to f( be
obtuse, which implies that one center, at least, is outside the corresponding
triangle. In this situation, it is not natural to affect the value of u in the triangle
to that point... A remedy to avoid such situation is to use only acute triangles.

We must emphasize the validity of Proposition 5 (that is wellposedness of
the problem (Ph) and error bound O(h)), even when exotic situations (listed
above) happen for some faces.

4. EXTENSIONS TO N-DIMENSIONÂL CASE (N ^ 3 )

We want to extend our method to N-dimensional simplicial éléments K that
is to search for a numerical intégration formula diagonalising the mass matrix
and being exact on (PQ(K))N. This includes the case of triangles (proof of
Proposition 3 of § 2) and 3-D tetrahedra.

vol. 30, n° 4, 1996
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We consider a simplex K, of measure \K\, vertices a. with opposite face

f.9 and barycenter g = ^ - — j - 5) a..

Shape functions (/?/); of space RTX{K), corresponding to the fluxes through
faces (ƒ.)/ of JK", are~given by (see J. C. Nedelec [13]) :

For/70e (P0(K)f, we have :

N+\ N+l

with :

N+\

(16)

anc*
f 2 r

We have \po\ dx=a Ma, with ^ y = (Pi>Pj)(L2(K)f
a r = ( a 1 , . . . , û ! J V + 1 ) . Our aim is here to search for /u = (/JV..., JJN+X) such
that :

f \Po

with D = d i a g ( / u l f . . . , ^ + 1 ) s that is to say :

aT Ma = a D^ a (17)

with a e RN+l satisfying (16). But condition (16) can also be written
eT o. = 0 with eT = ( 1, ..., 1 ) and e e RN+\ or also

M2 AN Modélisation mathématique et Analyse numérique
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with P e R . We notice that Q = I - TJ—J ee is a projector which
satisfies :

Qe = 0 and Q7' = Q .

Hence, relation (17) is equivalent to the matricial equality :

QMQ = QDUQ.

(18)

(19)

We first calculate the exact mass matrix M (where g dénotes the barycenter of
K):

= ^27^72 jK(x- g + g - apx- g + g - aj) dx

N2\K\2 (x-g)2dx+\ (g -apg - a.) dx
JK JK

lsince (x - g) dx = 0.
JK

We obtain finally :

that is (p2eeT+GGTj ^ (p\eeT+GGT) with GT = (g - av ..., g - aN+]).

From (18), we get QM = —^— QGGT, that is to say :

(20)

vol. 30, n° 4, 1996
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We have moreover :
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= GT- J^J ( g - a, g - aN+, ) eeT

= GT-

= GT

N+ 1

N+]

2,(9-",)
/ = 1

and (20) reduces to QMQ = —^—GG r and (19) can be rewriten

(21)

On the other hand :

= D

and (21) becomes finally :

l ) 2

.. (22)

For / = ; 0 = l t o 7 V + l ) :
we obtain, af ter summation on all / :

N+ l N+ 1

Reporting this result in (22), we have the following relation :

N\N-
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For i' ^ j :

with (23) and (22), we have to satisfy :

463

N+ 1

or :

N+ i H

-ai\
2+\g-aj\

2-fj^\g-ak\
2\=0. (24)

k — 1 _|

For Af = 2, condition (24) is satisfied for all (ij) e ( 1, ..., /V + 1 )2 ;
moreover, we find for (/i,-),-» t n e unique values for a triangular element :

proving Proposition 3 of § 2.
For N = 3, condition (24) is equivalent to the following relations :

g-\(a2 + a,)

-( }

2
 =

2

g

9

--(a )

)

2

2
=

9

g

--(a +a )

l

1 2 f

or also :

This last relation is a necessary and sufficient condition for K to be an
orthocentered tetrahedron, which means that its four heights are concurrent ;
in particular, regular tetrahedra satisfy this condition.

With this condition, coefficients (ju,.),- are given by :

where :
• 17̂ 1 is the area of the face opposite to vertex ai ;
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• di is the distance bet ween the bary center of Tx and /, point of convergence
of straight line perpendicular to each barycenter of the four faces (in case of
regular tetrahedron, ƒ is the barycenter of K).

For N > 3, (24) is verified by regular simplices, but the whole set of
simplices verifying (24) (extension to Af of orthocentered tetrahedra) is less
evident to characterize geometrically.

5. CONCLUDING REMARKS

Essentially for a genera! 2-D triangular mesh, we have produced a 4-points
cell-centered finite volume scheme in the variable M, after élimination of the
variable p from the mixed finite element system, and that, thanks to an
appropriaTe « mass-lumping ». We emphasize the fact that the error bound of
Propositions is O(h) for an approximate H2(Q)-norm of the error
u - üh, since p-ph = Vu- Vhüh and div (p-ph) = Au- Ahüh.

Concerning the mass-lumping, it must be noticed that we have restricted
ourselves to intégration formulas being exact for constant fields, that is
satisfying (5). It is with this restriction that we have obtained the unique
formula of Proposition 3 for a gênerai triangle, and in N — D (N ^ 3)
existence only for special simplices, among which the regular ones. More
gênerai diagonalizing formulas have only to verify an inequaîity of the type
of (7) with a(hT) = O(hT), implying a finite volume scheme verifying
Proposition 5, that is with a O(h) error bound.

Although our présentation is limited to the model problem, we can extend
the present technique to the operator - div (s# grad ( M ) ) , where si is an
appropriate variable matrix, and to other problems such as those of
convection-diffusion and elasticity. Extension to more gênerai diagonalizing
formulas is in progress.
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