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MATHEMATICA!. MODELLING AND NU M ER IC AL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 30, n° 4, 1996, p. 413 à 444)

MODELING AND JUSTIFICATION OF AN EIGENVALUE PROBLEM
FOR A PLATE INSERTED IN A THREE-DIMENSIONAL SUPPORT (*)

by V. LODS (*)

Résumé. — We consider a problem in three-dimensional linearized elasticity posed over a
domain consisting ofa plate with thickness 2 e inserted into a solid as in P. G. Ciarlet, H. Le Dret
and R. Nzengwa in the static case, and F. Bourquin and P. G. Ciarlet for the eigenvalue problem.
We assume that the Lamé constants ofthe material constituting the plate vary as e~ 3, the density
varies as e~ , and the Lamé constants and density of the material constituting the « three-
dimensional » supporting structure vary as é~ ~s where SE ]0, 1], We prove the convergence
of the eigenvalues of the three-dimensional problem as e approaches zero either to the eigen-
values of the support, or to the eigenvalues of the plate, which then transversaly vibrâtes at the
limit By contrast with the work of F Bourquin and P. G. Ciarlet, these « limit » eigenvalue
problems are independent. Moreover, we can prove that the eigenfunctions of the « three-
dimensional » supporting structure vary as £ , while the eigenfunctions of the plate vary as
e for the tangential components, and as e for the normal component. The method used here
allows to improve the results of P. G Ciarlet and H. Le Dret [5], where the displacement was
proved to be of a smaller order of magnitude than e2.

Résumé. — On considère un problème d'élasticité linéarisée tridimensionnelle posé sur un
domaine constitué d'une plaque d'épaisseur 2 E insérée dans un support tridimensionnel élas-
tique. Ce problème a déjà été à la base de travaux de P. G. Ciarlet, H. Le Dret et /?. Nzengwa
[7] pour le cas statique, et de F. Bourquin et P. G. Ciarlet [1] pour le problème aux valeurs
propres. Nous supposons d'une part que les constantes de Lamé du matériau constituant la
plaque sont en s ' et la densité en e , et d'autre part que les constantes de Lamé et la densité
du matériau constituant le support sont en e~ ~s où s e ]0, 1]. Nous prouvons la convergence
des valeurs propres du corps tridimensionnel quand e tend vers zéro ou bien vers les valeurs
propres du support, ou bien vers les valeurs propres de la plaque, qui vibre alors uniquement
transversalement à la limite. Contrairement aux modèles limites obtenus par F. Bourquin et P. G.
Ciarlet, les problèmes « limites » aux valeurs propres du support et de la plaque sont indépen-
dants. De plus, nous montrons que les fonctions propres du support sont en e2 + s/2

> donc
négligeables devant celles de la plaque qui sont en e2 pour les composantes tangentielles et en
e pour la composante normale. La démarche utilisée ici permet d'affiner les résultats obtenus par
P G. Ciarlet et H. Le Dret [5] où il était établi que les déplacements du support sont négligeables
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414 V. LODS

INTRODUCTION

In [5], P. G. Ciarlet and H. Le Dret justified the classical boundary
conditions of a clamped plate in linearized elasticity by an asymptotic analysis.
More specifically, they considered a three-dimensional linearly elastic struc-
ture consisting of a « thin » plate with thickness 2 e, inserted into a « sup-
porting structure » whose Lamé constants converge to + <*> as e~ 2~~6 for some
s > 0 and the Lamé constants of the material constituting the plate are
assumed to vary as e~ 3. Then the structure supporting the plate becomes
« rigid in the limit ».

Our aim here is to study the eigenvalue problem associated with the static
problem considered in [5]. To this end, we make the same asymptotic al
hypotheses on the Lamé constants, and we introducé conditions about the
densities of the materials constituting the plate and the three-dimensional
supporting structure : the density of the plate varies as e~ \ and the density of
the three-dimensional supporting structure varies as e~ ~\ Moreover, we have
to assume that s e ]0, 1]. Consequently, we cannot use the same material in
the plate and in the « three-dimensional » supporting structure.

To study the convergence of the eigenvalues and the eigenfunctions, we use
the tools developped in [1], [4], by applying the crucial idea introduced by
P. G. Ciarlet and H. Le Dret in [5]. This idea consists in scaling the different
parts of the full structure independently of each other, but counting the
junction twice. Then, at each point in the « junction », the displacement is
scaled in two ways depending on whether it is considered as a displacement
of the plate or as a displacement of the three-dimensional part. As these two
scalings correspond to the same displacement of the whole structure, we obtain
junctions conditions which depend on the choices of the scalings. Then, by
arguing as in [1] for instance, we obtain both the spectrum of the plate and the
spectrum of the three-dimensional part as e —¥ 0. Here, the two eigenvalue
« limit » problems are independent, contrary to the results obtained by F.
Bourquin and P. G. Ciarlet [l]where the asymptotic assumptions are different.
Moreover, we prove the strong convergence of the scaled eigenfunctions.
Thus, we deduce that the vibrations of the plate vary as e2 for the tangential
components and as e for the normal component, while the vibrations of the
three-dimensional supporting structure vary as e + i where s e ]0, 1 ] . Con-
sequently, the vibrations of the plate are naturally greater than the vibrations
of the three-dimensional part, but the two bodies can vibrate « simulta-
neously » if the intersections of the two spectra is not empty.

We can make other asymptotic hypotheses on the densities. More precisely,
we can choose the density of the plate as e~

 2~s~r
 ancj the density of the

three-dimensional supporting structure as e" * ~r. From the min-max principle,
we obtain that all the eigenvalues approach 0 if r > 0, and converge to
+ oo if r < 0.
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1. THE THREE-DIMENSIONAL PROBLEM

415

Latin indices take their values in the set {l, 2, 3} and Greek indices take
their values in the set {1, 2} ; the repeated index convention for summation is
used. Vector-valued functions and their associated function spaces are denoted
by boldface letters.

Let there be given strictly positive constants av bv a2, av bv /?, where
f$<b{. With each e > 0, we associate the sets

œ = {(xvx2) G R2 ; 0 < x} < bv - a2 < x2 < a2}, Qe = œ x ] - e, e[ ,

l> X2 A ~ a2 a2Î »
= œfi X ] ~

Fo = {(xvx2,x3) e R3 ,*, =- av - a2 <

O = {(^p xv x3) e R ; — al < x{ < /?, — a2

x3 < b3} ,

av — a3 b3} ,

and

= O - Ö* , S€ = O u

and we dénote by xe = (JC*) a generic point in the set S€ and by d* the partial
derivative *

- 2 e

Figure 1. — The three-dimensional elastic structure.

The set 5e is the référence configuration of an elastic structure with two
parts, glued together along their common boundary : a « thin » part Q* called
the plate a three-dimensional part 0^ called the support. The Lamé constants

vol. 30, n° 4, 1996



416 V. LODS

À€, / / and the density p€ of the linearly elastic material constituting the plate
depend on e. More precisely, we assume that there exist positive constants
A, ju, y?, which are independent of e such that

Ae = e~3/I, jf = e-3ju, p* = e-lpin~Q\ (1)

The set O\ is the référence configuration of a linearly elastic body whose
Lamé constants A€, ft and the density ff are assumed to be of the form

I€ = € - 2 - J l , {f^e-2~*p, ff = e-2-*pinÖl (2)

with s e ]0, 1], 1 > 0, /> > 0 are independent of e.
The density of the three-dimensional supporting structure O^ is a greater

order of magnitude than the density of the plate Qe, but we can choose exactly
the same Lamé constants in the two bodies. Beside we assume here the same
asymptotic hypothesis of Lamé constants as in [5].

We assume that there are no applied body forces. Thus in linearized
elastodynamics, the displacement field w€ = ( w* ) of the body Se satisfies the
équations :

~2 €

f-^r^^e^^èii+ïfe^)) in O'p.

with the boundary condition

for all time t 5= 0, where e}j{ w€ ) = Ö( <*/ w] + <fj w] ) are the components
of the linearized strain tensor. A. Raoult [16] studied the associated probiem
depending on the time, with the same kind of asumptions than here. We look
for stationary solutions of the form

w (x ,t) = n (

or w€ (jce,0 = ue(xe)sin {V Ae t j ,x e e 5e, t ̂  0 ,

where A* is a positive number (cf. [9]). Thus, to find stationnary solutions, we
have to solve the eigenvalue probiem

find (A\ u€ ) e R x V€ such that

Be( uÊ, ve ) = A\ u€, ve )6 for all v€ e Ve , (3)

M2 AN Modélisation mathématique et Analyse numérique
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AN EIGENVALUE PROBLEM FOR AN INSERTED PLATE 417

where the test space V€ is given by

V€ = {t>e = (t>J)e H l (S e ) , t ; 6 = 0 o n r 0 } ,

and

£e(u\v€ ) = ƒ U€^(u e )eqq(v* ) + 2ffei£vt ) e^ )} dx*

? epp{vt ) eqq(y* ) + 2jf e..(u€ ) ^ ( v € )} dx* ,

oj

F. Bourquin and R G. Ciarlet ([!]) have studied the same eigen value problem
involving different asymptotic assumptions and different boundary condi-
tions : only the plate is clamped along the part F^ of its boundary where

; kl < ^

By arguing as in [1], [4], and by using the spectral theory of compact
operators» we see that the eigenvalues Al'€, l ^ 1 can be arranged as

Q<Âh€ ^ AXe s£ ...Au* ^ Al+h€ ^ ... with y l u - » + oo as / - > + oo ;

and that there exists a séquence of corresponding eigenfunctions u1'€ e V e ,
which constitute a complete orthogonal set in both Hubert spaces Ve and
L2 ( O e ) . The eigenfunctions u ' e satisfy the relations

B€( ul e , ve ) = Au X ul 6 , ve f for all v€ e V€ , (4)

and we assume that the orthonormalization condition

(n'-\nm-tT = e2ôkm 1 « *, m , (5)
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418 V. LODS

holds, where Skm=\ if k = m, Skm = 0 else. The associated boundary
value problem in detaiïed in [1], with different boundary conditions.

2. THE « SCALED » THREE-DIMENSIONAL PROBLEM OVER SETS INDEPENDENT
OF €

Classically ([2], [3], [11], [10]) as in the case of a single plate, we first
define the open set Ö = C Ü X ] - 1 , 1 [ in order to deal with functions
defined on sets independent of e. To avoid an overlapping over the inserted
part Qfp we then introducé as in [1], [5], [6] the translated set
Ó = O + t, where t is a vector such that Q n Q = 0 . Let x = (*,-) dénote
a generic point in the set Q, let Jc= (Jtf) dénote a genene point in the set
O, and let di = d/dxt, di = dfdx.. On the one hand, with each point
jc€ = (**) e fl€, we associate the point x=(xi)sQ defined by

hzZ H iy~--j~-a>-^

Figure 2. — The sets Q* and O, which are respectively occupied by the « thin » part and the
« three-dimensional » part of the elastic structure, are mapped into two disjoint^sets Q and
{Q}~ . The « inserted » part Ö^ of the thin part is thus mapped twice, once onto Qp<z{Q)~ .
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AN EIGEN VALUE PROBLEM FOR AN INSERTED PLATE 419

xa = x€
a, x3 = (l/€)x3-. we thus have d€

a - da and d\ = edy On the other

hand, with each point X€ = ( X * ) G 0, we associate the translated point

x = x€ + t e Ù : we thus have d* = èr

To study the behavior of the eigenfunctions u ' € of problem (3),

we introducé the scaled unknowns u (e ) = ( w^t ) ) : Q —> R3 ,

ü (e ) = (M,.(e)) : S - > R 3 definedby

W
€
a(x

€) = e2
 Mt t(€) (x) f «€

3(x
6) = zu3(x) for ail xe G Q*, (6)

and

u]{x^) = €2 + s/2«(.(e) ( je) for ail x£ G Ö . (7)

Remark 1 : The scalings (6) have been introduced by R G. Ciarlet and R
Destuynder ([2], [3], [10]) to study the behavior of the displacement of a single
plate. Then P. G. Ciarlet and H. Le Dret have used formulas (6) to study the
behavior of the solution of the static problem associated with the eigenvalue
problem (3). But they have defined the scaled functions üe over the set O by

M*(jt€) = €2M.(e)(Jc) forall x€ e Ö .

Then, under some spécifie assumptions on the applied forces, P. G. Ciarlet
and H. Le Dret proved in [5] the convergence of the displacement
(ü (e ) , u ( e ) ) in the space H ( Ó ) x H (£?) towards a function (ü, u )
such that ü = 0 on Q and u is a Kirchhoff-Love field. The proof given hère
allows to improve the results of P. G. Ciarlet and H. Le Dret ([5]) when
s e ]0, 1]. Indeed, by choosing the scalings (7), we obtain the strong con-
vergence of the function ü(e ) , and consequently, the displacement üe of the
three-dimensionnal body O varies as e2+s/2. •

The function (ü ( e ) , u(-e)) defined in (6)-(7), belong to the space
H1 (Ù) x H 1 (Q) and vérifies the boundary conditions M.(e) (Je) = 0 for
ail Je e t0 - Fo + t. Moreover, by (6)-(7), this fonction satisfies the junction
conditions of the three dimensional problem

üa(z) = e-snua(e)(x) (8)

M 3 ( O ( ^ ) = € - J / 2 - 1
M 3 ( € ) ( X ) (9)

at each corresponding point Je e Ù^ = Q€p + t and
XG Q» = cûpX ] — 1, 1[, i.e. x and x correspond to the same point

x€ e Q€n (see fig. 2). The function ( ü ( e ) , u ( e ) ) thus belongs to the space
V(e) , which dépends on the thickness e, defined by

V(e) = {(v,v) G H1 ( Ö ) x H 1 (Q) ; v = 0 on To ; and

va(x) - e" ' n va(x) , 03(Jc) = e" sll~x i;3(x)

at ail corresponding points x G Q^ and x G Ql} . (10)

vol. 30, n° 4, 1996



420 V. LODS

To obtain the variational équations satisfied by the scaled functions
( ü ( e ) , u ( e ) ), we associate with the vector field ve = (u*) e V€, the scaled
vector fields v( e ) : Q —> R3 and v( e ) : Q —» R3 defined by the same for-
mulas as in (6)-(7), i.e.,

vl(x*) = e2 va(e) (x ) , ^ ( x 6 ) = €t?3(x) for all x* e Ö€ ,

and

i;^(Jc
e) = e2 + j / 2 i 5 y ( € ) ( ^ ) f o r a 1 1 xe e Ö .

Finally, for consistency of the notations, we also let

A(e)d= Ae. (11)

We then verify that (A(e), (ü(€>, u(e) ) G ]0, + °°[ x V(e) ) satisfies
the variational équations

f*(ÖJ)Ae(ü(€)):e(v(e.))<Ü:+ f AJC(O( C ) ) : ic(v(e) ) <fc =

(12)

for all ( v( e ), v( e ) ) G V( e ), where / ( A ) dénotes the characteristic function
of a set A, 6^ = O^ + t, and

^ = ( V ) . A = ( A ^ X kt : f = A p / ttj tkl,

Ar : f = Aiyjü ^ rw for any tensor t = ( t.. ) ,

with

^,y« = ^,y 5 H + Piô* à» + S„ ôjk ) >

Aijki = ^uôki + ^ôikôji + ônàjk) ,

e(y) = (eo(y)), ic(v) = (^(v)) ,

M2 AN Modélisation mathématique et Analyse numérique
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AN EIGENVALUE PROBLEM FOR AN INSERTED PLATE 421

where

with eij(y)=~(divj + djvi) and e (v ) = (e . , (v)) .
Thus, with each eigensolution (Al>e, u / e ) of problem (3) is associated the

eigensolution ( ^ ' ( e ) , ( ü ' ( e ) , u '(O)> by relations (6)-(7) and (11). As the
eigenfunctions (u / l € ) of problem (3) are normalized as in (5), the eigenfunc-
tion ( ü ( e ) , u ( e ) ) verify

f /(ÖJ)^(c) «;(€)£«+ f p(e2 uk
a

(13)
for all /c, Z 3s 1 .

Remark 2 : In Lemma 3, we prove that the orthonomalized functions
(u(e)t u ( e ) ) are bounded indepently of e in the space
H1 (Q) x H1 (£>). Consequently, the scalings (6)-(7) imply that the com-
ponents u] of the eigenfunctions of the three-dimensional supporting structure
are « small » compared to the eigenfunctions of the plate, since s is assumed
to be strictly positive. •

3. OTHER ASYMPTOTICAL ASSUMPTIONS

As we already noticed, F. Bourquin and P. G. Ciarlet ([1]) have studied the
same kind of eigenvalue problem (3), with different boundary conditions and
different asymptotical assumptions. Indeed in [1], the displacement ü€ is
assumed to vanish along a part 7^ of the boundary of the plate and the Lamé
constants and density of the « three-dimensional » supporting structure are
independent of e, which means that the body that occupies the set O^ is
assumed to be « less rigid » and « less heavy » than here. Thus, the eigen-
functions u?oe in the three-dimensionnal part O^ are greater than the dis-
placement obtained here. Indeed, the eigenfunctions u?0* of [1] vary as e,
while the eigenfunctions of our problem vary as e2 + sil (see Lemma 3), with the
same orthonormalization condition.

Let us recall that the limit eigenvalue problem obtained in [1] is a coupled,
pluridimensional eigenvalue problem, which is associated with the limit
variation al problem obtained by R G. Ciarlet, H. Le Dret and R. Nzengwa
([7])-
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422 V. LODS

We are going to use several results of F. Bourquin and R G. Ciarlet, since
they studied in [1] the eigen value problem (3) associated with the following
test space

(14)

(€) = { ( v , v ) e H1

and v a(x) - eva(x), v 3(x) = V3(x)

at all corresponding points x <E Q^ and x e

Consequently, we can apply their results as soon as the boundary conditions
and the transmission conditions were not used in their proofs.

4. CONVERGENCE OF (/f ' (e), (ü ' (e ) , u (e ) ) ) as € -> 0

Let H . ||0 A and || . ||mM dénote respect!vely the norms in LZ(A) and
Hm(A), m 5= 1, of scalar, or vector-valued, functions defined on an open set
A in R* . Strong and weak convergences are respectively denoted -> and
- - . We establish the convergence of ( Al{ e ), ( û'( e ), u( e ) ) ) as e -> 0 and we
identify the limits. In particular, we prove that the eigenfunction of the plate
u ; ( e ) is a Kirchhoff-Love field.

Figure 3. — Various sets found in Theorem 1 and in its proof.

THEOREM 1 : 1. Define the spaces

V3(co* ) = -0 on (15)
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AN EIGENVALUE PROBLEM FOR AN INSERTED PLATE 423

where a/ = co - œ^, y* = C0p n œ*, and

V={VG H1(^);v-0^r0}, (16)

and consider the eigenvalue problems :

Find (A,C3) e ]0, + oo[ x V3(co* ) such thaï

J \ I { r f e AC3 ̂  + Ai ̂  C3} ̂  >/3 dx = 2 yi J \ K3

for all ?73 e V3(œ*), and

Find (À, ü) G ]0, + oo[ x Vsuch that

(17)

pü{v {dx (18)
ù

for ail v e V. The eigenvalues oftwo problems (17)-(18) can be arrangea so
as to satisfy

0<A] ^ A2 =£ ... ̂  A1 ̂  Au ' ^ ... with A1 -> + « fllS / -> + oo . (19)

2. For ^ac/î integer l 5= 1,

/ ( ' ( e ) ^ ^ ' a s e - ^ 0 . (20)

3. Wfe assume that A1 is a simple eigenvalue ofboth problems (17)-(I8). Then,
there exists eo(/) > 0 such that for all e ̂  eo( /) , ^ ( O /s a/so a simple
eigenvalue of problem (12) and there exists an eigenfunction
(ü ' (€ ) , u' ( e ) ) associated with Al(e), normalized as in (13), that converges
into the space H1 (Q) x H1 (Ü) to a limit (u, u ), where ul = (u\) can
be written as follows

a v v ^ 3
 l

3 l 2 and u\(xvxvx3) = Çl
3(xvx2) (21)

for ail x= (Xj) G Q = Q — Q^ where the function £3 belongs to the space

V3(û>*).

Morever (u, C3) is an eigenfunction of both problems (17)-(18) associated

with the eigenvalue A .
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424 V. LODS

4. If A is a simple eigenvalue of either problem (17), or problem (18), then
the conclusions of part 3 are satisfied. Moreover the « limit » function Çl

3, or
ü', is an eigenfunction ofproblem (17), or ofproblem (18), associated with the
eigenvalue A , and ü = 0, or £3 = 0.
5. If A1 does not satisfy the conditions of part 3) or 4), there exists a
subsequence of eigenfunctions associated with the eigenvalues A (e) that
satisfy either the conclusions of Part (3) if A1 is an eigenvalue of both
problems (17)-(18), or the conclusions of Part (4) otherwise.
6. The eigenfunctions obtained as in 3)-4) and 5) form a complete set in both
spaces VxV3(co*) and L2(Q) x L2(œ*) and they satisfy

3dx = Skl k , l * l . (22)\ püfödx+ll

Remark 3 : This theorem is still true if we assume

A* = e A(e) , pe = e" l ~r p in &€ , />€ = e~ 2"s~rp in Ö* ,

where r is a real number independent of e, since the right-hand side of
équation (12) is then not modifled. Thus, the eigenvalues approach zero if the
densities are « large » ( r > 0) , they converge towards + « if the densities are
« small » ( r < 0 ) , and they converge towards strictly positive limits if
r = 0. D

The proof of Theorem 1 is long and technical. So, for this reason, we
proceed in several lemmas. We first establish that the eigenvalues and the
eigenfunctions are bounded independently of e. Then, we identify the limits
and finally we prove the strong convergences.

L E M M A 1 : For each integer l ^ 1, the family (Al(e))^>0 is bounded.

Proof: The proof of Lemma 1 of F. Bourquin and P. G. Ciarlet ([1]) which
is based on the min-max principle ([9]) allows to obtain this resuit. Indeed, the
transmission conditions are not used by F. Bourquin and P. G. Ciarlet, and the
boundary conditions have not a spécifie rôle (see Part 2). D

To prove that the eigenfunctions (ü ' ( e ) , u' ( e ) ) are bounded in the space
H1 (Q) x H1 (£2), we first show that the semi-norm

is a norm over the space V ( e ) defined in (10), which in addition is uniformly
equivalent (with respect to e) to the norm

M2 AN Modélisation mathématique et Analyse numérique
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AN EIGENVALUE PROBLEM FOR AN INSERTED PLATE 425

LEMMA 2 : There exists a constant C > 0 independent of e such that

v)| /oraH(v,v)e V( € ) . (23)

Proof : The proof given here can be applied for ail s 5= 0. We adapt the
proof of P. G. Ciarlet and H. Le Dret ([5], Lemma 1), the transmission
conditions being different here. First, we verify that the semi-norm
( v, v ) —¥ | (v, v ) | is a norm over the space V(e ) . Indeed, let (v, v ) be a
function of the space V ( e ) such that | (v, v ) | = 0 . Let the « de-scaled »
function ve = (v€.) e H1 ( 5 e ) be defined by

vl(x€) = e2 va(e) (x) , ue
3(x

6) = ei>3(e) (x) for all xe e Q* ,

ve
i(x

e) = e2 + s/2v .(e) (Je) for all xe e Ö .

Then |(v, v ) | = 0 implies that e „ ( v € ) = 0 on 5€. Since
y€ ~* iey(v € )lo 5€ ̂ s a n o r m o v e r t n e space Ve by Korn's inequality and the
boundary condition along the part Fo, we deduce that v€ = 0 in S€, and so
(v, v) is equal to zero. Consequently (v, v) —» | ( v, v ) | is a norm on the
space V(e ) .

If inequality (23) is false, there exist séquences ê  and (v*, v* ) e V(eJfc)
such that

e t->0

ll(v\

, / ) H
Since vk

II v*

as k —

v*) | | =

• 0 as

= 0 on

II - - > <

1,

i k - » + « - .

,T0, Korn's inequality

(24)

(25)

(26)

gives

(27)

By (26),

and in particular,

v ^ - ^ 0 in H1 / 2(d>^). (28)

On the other hand, the convergence \e(\k ) | 0 Q —> 0 due to (26) implies (e.g.
by involving the same kind of arguments as in Du vaut-Lions ([12], theo-
r e m 3 A p. 117)) that there exist two vectors a* G R3 and hk e R3 and a
function / e H1 ( Q ) such that

v* (x) = a* + b* A 0x + / ( J C ) for ail x e D (29)
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with

(30)

Then by (28), the junction conditions contained in the définition of the space
V(e)

V k
a(x) = e- °n i £ U ) , vk

3{x) = e~k
 sa- ' v\{x\

at each point x e Qp corresponding to x e Q^ imply

v ^ ^ 0 in H 1 ' 2 ^ ) , (31)

because s > 0. By (29)-(30) and (31), the vectors (a* + b* A O x ) ^ are
bounded independently of k in the space H1/2 (co^). Then, as the functions
(aA -f b AOx). all belong to the same finite-dimensional vector space,
there exists a subsequence that converges to a function of the form
(a + b A 0 x ) K By (29)-(30) and (31), (a + b A 0 x ) ^ = 0, so
a = b = 0. Thus, from (29)-(30) and (27), we deduce that
|| (v*, v* ) || -> 0, which contradicts (25). D

We can now prove that the séquence of eigenfunctions (u' (e) , u(e) ) is
bounded independently of e.

LEMMA 3 : For each integer l 5= 1, the family (u (e) , ü / (€) ) e > 0 is
bounded independently of e in the space H1 ( Q ) xH 1 ( Q ). Thus there exists
a subsequence, still indexed by e for notational convenience, and which can
be chosen to be the same for all integers l 5= 1, and there exists a number
Al ^ 0 and a pair (ü', u' ) e H1 (Q) x Hl (Q) such that

Al(e)^Al, (32)

u (e)—u mH1 (Q) andu = 0 on To , (33)

u'(€)—u' w t f W , (34)

as e —» 0.

Proof: We follows the ideas of R G. Ciarlet and H. Le Dret ([5]), (see also
[1]> [7]). The orthonormalization condition (13) and équation (12) imply

x+ \ A K ( U 1 (e)) : K ( U ' ( e ) ) dx .
Jn

X
ù

(35)
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We then write, by using the notations introduced in part 2,

f A K ( U ' ( e ) ) :K(U'(€))</*= f

The idea of R G. Ciarlet, H. Le Dret consists in splitting the intégral over the
set Qo into two equal (for definiteness) parts by using the transmission
conditions (8)-(9). In this fashion, we obtain

^ Ju

Thus, equality (35) can be written as follows

Ae)= f X(Ö})Ae(ül(e)):e(ül(e))dx
J ù

Since there exists a constant c > 0 which dépends on the Lamé constants
A, ju, 1, /ï, such that

Âe : e ^ ce : e and Ae : e ^ ce : e , (36)

for all symmetrie tensor e — ̂ e^), we obtain (because s ^ 1 and
e== 1)

On the other hand, it follows from the définition of K( U ( e ) ) that
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By (37)-(38) and by Lemma 1, we deduce that | ( ü ' ( e ) , u' ( e ) ) | is bounded
mdependtly of e, and consequently by (23), the family (ü ' (€ ) , ü ( e ) ) is
bounded in the space H1 ( Ó ) x H 1 (ü) The other conclusions of Lemma 3
then follow from this property D

As in the case of a single plate (see for instance [2]), we next show that the
weak limit found in (34) is a Kirchhoff-Love vector field over the set Q

LEMMA 4 For each integer l 5= 1, the function u belongs to the space

VKL(Q)^f{ve Hl (Q),ei3(\) = 0inQ}i (39)

which can also be defined as

\KL ( O ) = {v G H1 (O) , va = rja - x3 da rjv

v3 = rfv with rja G Hl(co), n3 G H2(a>)}

Proof The proof of Lemma 3 given by P G Ciarlet-H Le Dret ([5]) can
be used here This result comes from the fact that the séquence
(K(U ( O ) ) e > 0 is bounded into the space L2(Q) by (37), and consequently
the séquences et3( u ( e ) ) converge to 0 in the space L2 ( Q ) as e —> 0 Thus,

hence u G V^ L ( Q ) The équivalence between définitions (39) and (40) is
estabhshed in [3] for instance •

We next show that the scaled « limit » displacement field vanishes in the
ïnserted portion of the scaled plate In the foliowing lemma, the assumption
s > 0 is crucial

LEMMA 5 For each integer l 3= 1, the weak limit u satisfies

u = 0 in Qp (40)

Proof By définition of the space V(e),

«'„(O 0 0 = e'\(e) (jë) and ^ ( e ) 0 0 = e i /2+1ü3(e) (je)

at all corresponding points x e Q^ and x G Qn Hence

^ ( 0 = ^ ( 0 and « ; | „/e) = €< c + If i3 | a , /C) , (41)

where co^d= co^ + t, these equahties being understood as holding up to a
translation by the vector t
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The trace operators from H1 (Ù) onto H1/2 (œ^) and from H1 (Q) onto
H1/2(co«) being strongly continuous, they are weakly continuous. Conse-
quently, the weakly convergence of the séquence ( ü'( e ), u' ( e ) ) in the space
H1 ( Ó ) x H 1 (fl) imply

" ( O l ^ - ^ / n H 1 ^ ^ ) and u\e ) ^ -u\^ in H1'2 (œfi) . (42)

It then follows from (42) (because 5 > 0 )

«U = 0. (43)

Since the function u belongs to the space VKL(Q), there exist by Lemma4
functions Çl

aeHl(Q) and Çl
3eH2(Q) such that «'a = C'a - *3 da C3 and

«3 = £3 in £2. Since CJ - 0 in cô  (by (44)), we deduce that u' = 0 on
fi/î = c o / ? x ] - l , l [ . D

To identify the weak limit, we proceed exactly as in [5]. First, by (37) and
by Lemma 1, there exists a subsequence, still indexed by e, of the séquence
(^(u' (O)) e>o anc* a Onction K1 G L2(Q) such that

K(U (e))—Klin L2 (fi) as € -> 0 .

By arguing as in [5] (Lemma 5), we prove that

K a 3 ( u / ( e ) ) d ^ i ^ 3 ( u / ( € ) ) - 0 i n L 2 ( f i * ) , (44)

K33(u' (e))d^ f ^ 3 3 ( u ' ( € ) ) - -jJ^e^u' ) in L2(fi*) , (45)

where fi = fi — fi^. We now obtain the « limit » équation satisfied by
u1.

LEMMA 6 : Let œ* = co - co^ and y* = co^ n co*. By Lemmas 4 and 5,
there exists functions

( £ ' „ £ ) £ V I 2 ( û > ' ) = { ( i / I , i / 2 ) e tfV) x H\œ) ;Va = 0 ony),

Cl
3 e V 3 (eu* ) = {T/3 e / / 2 ( o > * ) ; i/3 = âv »73 = 0 o n y*} ,

5t/c/i that

< = C-x3daC'3 and M'3 = Cl-
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Then

a (46)

and the function (3 solves the variational équation

(47)
V (O * V Q)

for all ?73 G V3(co ) . The bilinear form of the left-hand side of équation (48)
is symmetrie and coercive over the space V3(co ) ; hence> each eigenvalue is
strictly positive,

Proof: We can again use the proof of Lemma 6 of Ciarlet and Le Dret ([5]),
where the functions fi appearing in the right-hand side of équation (4.42) are
replaced by

Thus there exist subsequences such that/a(e) —> 0 and/3(e) -» pAl u\ in the
space L2(Q*). •

To find the équations satisfied by the weak limit u , we first prove the
following technical lemma.

LEMMA 7 : We define the space W^ of functions
(v, v) G H\Ù) XH\Q), such that

v is independent of the transverse variable xv

v(Jc ) = v(x) at all corresponding points x e co^ and x e w^

and we define the space :

W(€) = { ( w ( e ) , w ( e ) ) e H1 (fl) x Hl (O), w(e) = 0 on FQy and

w( e ) (x ) = w( e ) (x) at all corresponding points x e Q^ and x G Q^} . (48)

Let ( v, v ) be a function of the space W^ such that

v |(De H\&). (49)
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Then there exists a subsequence ( v ( e ) , v ( e ) ) such that

v(e) -» vmH 1 ( f i ) , as e -> 0 (50)

v(e) -» vmH 1 (fi) and d 3 v ( € ) = 0 m f i (51)

(v (e ) ,v (e ) )E W ( e ) / o r a / / € > 0 . (52)

Proof : We use the séquence (v(e), v(e)) introduced by P. G. Ciarlet, H.
Le Dret and R. Nzengwa for the normal components ([7], Lernma 6), defined
by:

v(e) = vin Q (53)

and

v(c) = vjdi in Q\ (54)

2e — I xJ | xJ — e - 0 -s-
v ( e ) = v|cö + vin fi - f i (55)

v(e) = vin Q2\ (56)

where 0 e = œ x ] - e, e[ and Ql€ = d) x ] - 2 e, 2 e[. Since the
function v.^ is assumed to belong to the space H1 (d>) by (50), the function
v(e) constructed in (55)-(57) belongs to the space H1 (Q). Besides, the
function v being independent of the transverse variable x3, so is the function
v(e), and thus we deduce from the assumptions made on the functions v and
v, that

v(e) (*) = v(e) (x)

at ail corresponding points Je e Q€p and x G Qp. The boundary condition
V|̂ () = 0 being satisfied, the pair (v(e), v(e)) belongs to the space
W( e ). The convergence of the séquence ( v( e ), v( e ) ) is established by P. G.
Ciarlet, H. Le Dret, R. Nzengwa ([6], [7]). D
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We now identify the « limit » problem satisfied by the three-dimensional
displacement u

LEMMA 8 The weak limit u belongs to the space

{ v | r o = 0 } , (57)

and solves the équation

Âe(u) e(\)dx = Al \ pui^x
ia JÜ

(58)

for all v E V Bes ides, the following normalization condition is satisfied

pü\u; dx + 2 pCl
3C

k
3dx = öklfor all k, l & 1 (59)

Ja Jco'

Let us notice that the bilinear form of the left-hand side of équation (59) is
coercive over the space V

Proof We proceed in three steps

First step we search variât wnal équations satisfied by (ü(e),\x ( e ) ) and
associated with the test space W(e)

Let ( v( € ), v( e ) ) be a function in the space V( e ) To apply Lemma 7, we
define the function (w(e) , w(e)) by

wa(e) = <Ts/2va(e) and w3(e) = e" '/2~ l i?3(e) m Q , (60)

and

w( € ) = v(e) inf l (61)
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The function (w(e), w(e)) belongs to the space W(e). Thus, équation (12)
can be written as follows :

f x(Ö})Ae(ül(e)):e(w(e))dx

^ f {^aa(u
l(e))e^(yv(e)) + 2/ie^Cu'(e)) ea

J Q

2

ea3(u
l ( e ) ) O 3 wa(e) + eda w3(€)) dx

(62)

for ail (w(€),w( e)) G W(e).
Second step : we obtain the variational équations that the weak limite ü

should satisfy when the test function v is subjected to the same restrictions as
in Lemma 7,

Let v be a function of the space V such that

v l c 5 e H l ( œ ) . (63)

With such a function v is first associated the function v* e H1 (w«) defined
by
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at all correspondmg points x e w^ and Je e co^ = co^ +1 The assumption
v» is thus crucially used here The function v* e H1 (co^) can be extended
to a function still denoted v* e H1 (co), because the set co has a Lipschitz-
contmuous boundary (see eg [14], p 80) We then define the function
v e H 3 ( i 2 ) a s follows

v(x) = v* (xvx2) for all x = (xt) e Q - cox] - 1, 1[

Thus, the function v is independent of the transverse variable x3 and besides

\(x) = V(JC) for all correspondmg points x e œp and Je e <T>{i

The function ( v, v ) then belongs to the space W^ defined m (49) Conse-
quently, by (64) and by Lemma 7, there exists a subsequence
{v( e ), v( e ) }£ > 0 of the space W( e ) venfymg conditions (51)-(52) With these
functions ( v ( e ) , v ( e ) ) e W(€) , équation (63) implies (because
d3\(e)=0 in Q)

f

tn f {A«M(u'

H jjx33(u' (e ) ) eaa(v(e))dx + jjiKa3(u' (e) ) 3aD3(e) dx l

(64)
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Let us recall the following properties {cf. (34), (37) and (52))

u' (e) is bounded independently of e in the space H1 (£2),

/cl3( \x ( e ) ) is bounded independently of e in the space L2 ( Q ),

v( e ) —> v in the space H1 ( Q ) as e —> 0.

We then deduce that ail terms in équation (65) in which intégrais over the open
set Q appear, converge towards 0, because s > 0. We now establish the
convergence

d^f f
J Ù

f
J

Âe(u)1 :e(v)dxase -> 0 . (65)

= f Âe(ul(e)):e(v(e))dx- f x(fi«) Â*(u'(e) ) : e{ v(e) ) dx .

To this end, we write /(e) as

/(e)

First,

f - « - -/
Jù P

since the family {x(&p) Âe( v(e) )} € > 0 converges strongly to 0 in the space
L2(Q), and by (33). Furthermore

f Âe(u(e)):e(\(e))dx-* \ Âe(u):
Jù Jù

: e( v) dx as e —> 0 ,

since the family (û / (e)) e > 0 weakly converges to ü' and the family
( v( e ) )€ > 0 strongly converges to v in the space H1 ( Q ). Hence (66) is proved.
In the same way, we can establish

f pül
t(e) v[(e) dx ̂  [ pü\v\dx.

Jù Jù

Consequently équation (65) implies

Âe(u) :e(\)dx = Al \ putvtdx (66)
Jù Jù
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for all functions v e V subjected to restriction (64) Thus, équation (65) is
satisfied as soon as the function v belongs to the space

By density of the space Vo into the space V with respect to the norm of
H1 (£?), équation (65) is satisfied for all functions of the space V

Third step The normahzation condition foliows from the strong conver-
gences of family (ü^e ) , u ' ( e ) ) e > 0 towards (ü', u ' ) mto the space
L2(Q) x L2(D), by Relhch-Kondrasov's theorem and by (13) D

We now estabhsh the strong convergence in the space
H1 ( ^ ) x H 1 (Q) of the subsequence ( u ( e ) V ( O )

LEMMA 9 By Lemma 3 and by (45) -(46), the re exists at least one subse-
quence venfying the following properties

Al(z)^>A\ (67)

( u ( e ) , u ( e ) h ( ü ' . i i 1 ) in H1 (f l) x H1 (Q) , (68)

K a 3 ( e ) ^ J f i c a ( u ' ( € ) ) - 0 in L2(<2*), (69)

as e 0, for all integers l 5= 1 All convergences (69) (71) are strong

f W d [5] (L 10) L t / 5 1 b tProof We proceed as in [5] (Lemma 10) Let / 5= 1 be a given integer
By Lemma 3, the subsequence (ü ' (€ ) , u' ( e ) ) converges weakly to
(ü' , ul ) in the space H1 (Q) x H1 (Q), and strongly to (ü', u7 ) in the space
L 2 ( Ö ) x L 2 ( £ 0 by the Rellich-Kondrasov's theorem It thus suffices to
show that family ( e ( ü ; ( e ) ) , e(ul ( e ) ) ) € > 0 strongly converges in the space
L2 (Ù) x L2 (Q), as the conclusion will then follow from Korn's inequality
apphed in the spaces H1 ( Q ) and H1 ( Q )

Let K - ( Kl
tJ ) dénote the weak limit of the séquence ( K( U ( e ) ) )e > 0 m

the space L2( Q ) (see Lemma 3 and (45)-(46)), which is given by

(71)
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By inequalities (36), there exists a constant c > 0 such that

c{\e(ül(e))-e(ül)\lQ+\K(u'<ie))-Kl\2
Oi2. + |K(«'(€))£ o,}

« f *
+ f ^

Ja

A ( K ( U ' ( O ) - I C ' ) (K(U' ( e ) ) -« ' )<& +

+ f A(/c(u'(e))) K(u'(e))dr (72)
ia,

The aim is to prove that the nght-hand side of the above ïnequahty converges
towards 0 Let us study the first term of the nght hand side of ïnequahty (73)

-e(ü1)) (e(ül(e) ) - e(ü')) dx
JQ

=£ 2 x(&})Ae(ül) (e(ül)-e(ül(e)))dx +
JQ

+ [ x(Og)Ae(ül(e)) e(ül(e))dx (73)
JQ

The transmission conditions (8)-(9) for the three-dimensional problem imply

x( Q\ ) Ae( ül( e ) ) e{ ul{ e ) ) dx
JQ

= € / ( ̂ j9 ) ̂ K ( u / ( € ) ) K( u ( e ) ) die

Hence, smce e may be choosen ^ 1, and since s ^ 1 by assumption, we
deduce

{ X(Q€)Ae(ül(e)) e(ül(e)) dx ^ \ X(^p) A K ( U 1 (e)) K ( U ' ( e ) ) dx

(74)
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Inequalities (73)-(74)-(75) then imply that there exists a constant d > 0 such
that

^ f x(a})Ae(ül):(e(ül))~e(ül(e))dx
J Q

+ \ X(Öl)A(e(ül(€))~e(ül)):(e(ül(€))-e(ül))dx
Jû

+ f AiKiu" (e)) - Kl) : (K(U1 (e)) - Kl) dx
ia*

+ f AK(ul(e)):K(ul(e))dx. (75)

We now show that the right-hand side of (76) converges to 0 as € approaches
0.

First,

f X(Q*fi)Ae(&l):(e(ül)-e(ül(e)))dx-*0,
Ju

since the family {^(Öp Ae(ü /)}€>0 strongly converges to 0 in the space
L2 (Ö) and the family {e(ü ) - £ (û (O)} e > 0 weakly converges to 0 in the
space L2 (Q). We then have to prove that the following quantities i (e )
converge to 0 :

/(O=f f x(O}) A(e(ül(e)) - e(ü1)) : (e(ül(e)) - e(ü1)) dx

+ f A(K(u'(e))-K
l):(K(n'(e))-Kl)dx

+ f A K ( U ' ( e ) ) : K ( U ' ( € ) ) < & .

First, we split J{ e ) as

J(e)=/ , (e)+/ 2 (e) ,

with

f x(O;)Ae(ül(e)):e(ul(t))dx+ A K ( U ' ( e ) ) : K(V! ( e ) ) dx
r JQ
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and

f (ul):(e(u1)- 2e(nl(e)))dx

+ A K : ( K - 2 1 C ( U (e)))dx.

Since the variational équations (12) are satisfied in particular by the pair
( ü'( e ), u' ( € ) ) in the space V( e ), we find that

Moreover we prove that, as before,

7 2 ( e ) -^J2
d=- \ Âe(u) :e(u)dx- \ AK1 : K1 dx .

Indeed the family (K(U ( e ) ) ) € > 0 converges weakly to K1 in L2 (£?*) and

1
J ù

-1
with

L
since the family (x(Q€p) e ( ü ) ) e > 0 strongly converges to 0 in the space
L2 (£?). Now, it suffices to show that 72 = - yl', as the conclusion will then
follow from the convergence of J(e) towards 0. By Lemma 8,

Àe(u) :e(u) dx = A1 püfydx . (76)

Besides, a simple computation based on the définition of K and on équa-
tion (48) satisfied by the function C3 shows that

f AKl:Kldx = Al f p{ul
3}

2dxt
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and consequently

Equahty (60) then imphes that J2 = - A1 D
We have shown the strong convergence of each subsequence

(Al(e), ( ü / ( e ) , u / ( e ) ) ) in the space ]0, + o o [ x H 1 ( Ö ) x H 1 ( ^ ) to
a solution ( y l , ( ü , u ) ) o f the « limit » eigenvalue problem (48)-(59), which
satisfies the orthonormalization condition (60) This « limit » eigenvalue prob-
lem can be written as

B((ü', £ ) . (v. *3» = À jMv,dx + 2J pC'3 m dx 1 (77)

for all (v, r}'3) e V x V3(a>*), where

+ f Âe(u) e(v)dx

Let us recall that F Bourquin and P G Ciarlet have studied the same
« initial » three-dimensional problem, but under other asymptotical assump-
tions The « limit » problem then obtained is a coupled eigenvalue problem
All the preceding lemmas are an adaptation of Lemmas 1 to 10 of F Bourquin
and P G Ciarlet ([1]) Consequently we do not prove the followmg propo-
sitions which are conséquences of precedmg lemmas, since their démonstra-
tions are detailed in [1] We can apply the results of F Bourquin and P G
Ciarlet ([1], Lemmas 11 and 12) because the büinear form B defined in (78)
is coercive over the space V x V3(co*)

PROPOSITION 1 Let (y l , ( ü , u ) ), / ^ 1 be the eigensolutions of problem
(78) found as limits of the subsequence (Al(e), (u(e), ul ( e ) ) ) 6 > 0 ,
/ 5= 1, orthonormahzed as in (13) of Problem (12) Then the séquence
( ü', C3 ) of eigenfunctions orthonormahzed as in (60) associated with the
eigenvalues (A ) / 5 ï t, counting their multiplicités, of problem (78) form a
complete set of the space H1 (Q) X V3(co*)

PROPOSITION 2 For each integer l ^ 1, the whole famdy (Al(e))€>0

converges as e —> 0 If for a given integer / ^ 1, the eigenvalue Al of
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problem (78) is simple, there exists €0( / ) > 0 such that for ail
e ^ eo(Z), the eigenvalue A ( e ) of problem (12) is simple and there exists
for all e ^ eo( / ) , an eigenfunction ( ü ( e ) , u ( e ) ) associated with / ^ ( e ) ,
satisfying the orthonormalization condition (13), such that the whole family
( ü ( e ) , u ( e ) ) converges into the space H1 (Q) x H 1 (Q) as e —» 0.

5. CONCLUSIONS AND COMMENTS

1. As in [1], [5], we describe the « limit » eigenvalue problem satisfied by
the limit functions ( ü', u' ) of the family ( ü'( e ), u' ( e ) )e > 0 for each integer
/ ^ 1. This limit problem is, at least formally, that associated with the
variational équations (17)-(18). By Theorem 1, there exists a function
C3 e H2(co) such that ul

a = - x 3 daC3 and u\ - Çl
3 in the set Q, which solves

the following eigenvalue problem, under some regularity assumptions about
the function (v (see for example [2])

= 2Al pCl
3 in CD ,

= 0 on y*

= 0 on y*

where y} = (dco —y) and ^a«(C3) is defined by

and ( v a) , ( T Q ) dénote the unit outer normal and unit tangential vectors along
dco, dr dénotes the tangential derivative operator along öco. In the same way,
we can verify that a smooth enough solution ü' of the variational équations
(18) solves the following équations in the set Q

— d ât(u ) = A pui m Q ,

(7,/u)^ = 0 on dü-r0,

Û1 = o on rQJ

where

and n = {n() is the unit outer normal vector along dQ.
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2. As in [5], we « de-scale » équations of Part 1 to obtain the équations
satisfy by the « de-scaled » eigenfunctions (ü''e, C'lC)€>0 attached to the
physical structure. Thus, with the « limit » eigenfunctions ü' : Q —> R3 we
associate the limit vectors fields ü'1 € = ( ü|'e ) : O —> R3 by letting, in view
of (7),

sf2~ls ~> (78)

at all corresponding points xe e O and x e Q \ and with the « limit » eigen-
1 3functions Ç1 = (C[) ' oj > R3R 3 , we associate the limit functions

C3 6 = ( C3,€( ) : cö -^ R by letting, in view of (6),

forall (79)

f o r a 1 1 (80)

Then, we obtain the following équations satisfied by the « de-scaled »
eigenfunctions ( ü'1 e, ^'€ )e > 0.

^2 = u

- 2AUep

= 0

= 0

= 0

in

on

on

on

co ,

co*,

*

where y l u =/f ' (e), m^C^'6) is defined by

and

<7y(ü
€)n7

ü

= 0

O

on
on

where d* and
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3. We first recall the conclusions derived by P. G. Ciarlet and H. Le Dret
([5]) about the « static » problem associated with the eigenvalue problem (3) :
The three-dimensional body becomes rigid in the limit ; the inserted portion
plate also becomes rigid in the limit, and the « limit » normal displacement
£3* solves the classical two-dimensional plate eigenvalue équations in œ*.

4. The spectrum of problem (78) is constituted of the eigenvalues of
problems (17)-(18). If the intersection of the spectrums of problems (17) and
(18) is empty, then, for ail integer / 5= 1, either u = 0, or f3 = 0. If there
exists an eigenvalue that belongs to the intersection of both spectrums asso-
ciated with problem (17) and (18), then the three-dimensional supporting
structure and the plate « vibrate simultaneously » as e —> 0.

In both cases, the displacements of the plate are larger than the displace-
ments of the three-dimensionnal part O. Indeed by (6)-(7), the tangential
components of the « limit » displacements of the plate vary as e2, and the
normal component varies as e, while the displacement of the three-
dimensional supporting structure varies as e

2 + s/2^ with s > 0.
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