@article{M2AN_1995__29_4_451_0, author = {Chehab, Jean-Paul}, title = {A nonlinear adaptative multiresolution method in finite differences with incremental unknowns}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {451--475}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {29}, number = {4}, year = {1995}, mrnumber = {1346279}, zbl = {0836.65114}, language = {en}, url = {http://www.numdam.org/item/M2AN_1995__29_4_451_0/} }
TY - JOUR AU - Chehab, Jean-Paul TI - A nonlinear adaptative multiresolution method in finite differences with incremental unknowns JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1995 SP - 451 EP - 475 VL - 29 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1995__29_4_451_0/ LA - en ID - M2AN_1995__29_4_451_0 ER -
%0 Journal Article %A Chehab, Jean-Paul %T A nonlinear adaptative multiresolution method in finite differences with incremental unknowns %J ESAIM: Modélisation mathématique et analyse numérique %D 1995 %P 451-475 %V 29 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1995__29_4_451_0/ %G en %F M2AN_1995__29_4_451_0
Chehab, Jean-Paul. A nonlinear adaptative multiresolution method in finite differences with incremental unknowns. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 4, pp. 451-475. http://www.numdam.org/item/M2AN_1995__29_4_451_0/
[1] Multiple Solutions of a Bifurcation Problem, in Bifurcation and Nonlinear Eigenvalue Problems, ed. C. Bardos, Proceedings Univ. Paris XIII Villetaneuse, Springer Verlag, n° 782, 42-53. | MR | Zbl
, 1978,[2] Incremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). | MR | Zbl
, ,[3] Incremental Unknowns for Solving Partial Differential Equations, Numerische Matematik, 59, 255-271. | MR | Zbl
, , 1991,[4] Incremental Unknowns in Finite Differences : Condition Number of the Matrix, SIAM J. of Matrix Analysis and Applications (SIMAX), 14, n° 2, 432-455. | MR | Zbl
, , 1993,[5] Résolution numérique des grands systèmes linéaires, Ecole d'été d'Analyse Numérique CEA-EDF-INRIA, Eyrolles. | MR | Zbl
, , 1983,[6] Geometric Theory of Semilinear Parabolic Equations, Springer Verlag, n° 840. | MR | Zbl
, 1981,[7] A Bifurcation Problem in E-layer Equilibria, Plasma Physics, 12, 435-445. | Zbl
, , 1970,[8] Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1139-1157. | MR | Zbl
, , 1989,[9] Nonlinear Galerkin Methods ; The Finite elements case, Numerische Matematik, 57, 205-226. | MR | Zbl
, , 1990,[10] Une méthode numérique en bifurcation. Application à un problème à frontière libre de la physique des plasmas, Applied Mathematics and Optimization, 127-151. | MR | Zbl
, 1979,[11] Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal, 21, 154-178. | MR | Zbl
, 1990,