A nonlinear adaptative multiresolution method in finite differences with incremental unknowns
ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 4, pp. 451-475.
@article{M2AN_1995__29_4_451_0,
     author = {Chehab, Jean-Paul},
     title = {A nonlinear adaptative multiresolution method in finite differences with incremental unknowns},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {451--475},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {29},
     number = {4},
     year = {1995},
     mrnumber = {1346279},
     zbl = {0836.65114},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1995__29_4_451_0/}
}
TY  - JOUR
AU  - Chehab, Jean-Paul
TI  - A nonlinear adaptative multiresolution method in finite differences with incremental unknowns
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1995
SP  - 451
EP  - 475
VL  - 29
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1995__29_4_451_0/
LA  - en
ID  - M2AN_1995__29_4_451_0
ER  - 
%0 Journal Article
%A Chehab, Jean-Paul
%T A nonlinear adaptative multiresolution method in finite differences with incremental unknowns
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1995
%P 451-475
%V 29
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1995__29_4_451_0/
%G en
%F M2AN_1995__29_4_451_0
Chehab, Jean-Paul. A nonlinear adaptative multiresolution method in finite differences with incremental unknowns. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 4, pp. 451-475. http://www.numdam.org/item/M2AN_1995__29_4_451_0/

[1] C. Bolley, 1978, Multiple Solutions of a Bifurcation Problem, in Bifurcation and Nonlinear Eigenvalue Problems, ed. C. Bardos, Proceedings Univ. Paris XIII Villetaneuse, Springer Verlag, n° 782, 42-53. | MR | Zbl

[2] J.-P. Chehab, R. Temam, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). | MR | Zbl

[3] M. Chen, R. Temam, 1991, Incremental Unknowns for Solving Partial Differential Equations, Numerische Matematik, 59, 255-271. | MR | Zbl

[4] M. Chen, R. Temam, 1993, Incremental Unknowns in Finite Differences : Condition Number of the Matrix, SIAM J. of Matrix Analysis and Applications (SIMAX), 14, n° 2, 432-455. | MR | Zbl

[5] G. H. Golub, G. A. Meurant, 1983, Résolution numérique des grands systèmes linéaires, Ecole d'été d'Analyse Numérique CEA-EDF-INRIA, Eyrolles. | MR | Zbl

[6] D. Henry, 1981, Geometric Theory of Semilinear Parabolic Equations, Springer Verlag, n° 840. | MR | Zbl

[7] H. Marder, B. Weitzner, 1970, A Bifurcation Problem in E-layer Equilibria, Plasma Physics, 12, 435-445. | Zbl

[8] M. Marion, R. Temam, 1989, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1139-1157. | MR | Zbl

[9] M. Marion, R. Temam, 1990, Nonlinear Galerkin Methods ; The Finite elements case, Numerische Matematik, 57, 205-226. | MR | Zbl

[10] M. Sermange, 1979, Une méthode numérique en bifurcation. Application à un problème à frontière libre de la physique des plasmas, Applied Mathematics and Optimization, 127-151. | MR | Zbl

[11] R. Temam, 1990, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal, 21, 154-178. | MR | Zbl