About an inverse eigenvalue problem arising in vibration analysis
ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 4, pp. 421-434.
@article{M2AN_1995__29_4_421_0,
     author = {Dai, Hua},
     title = {About an inverse eigenvalue problem arising in vibration analysis},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {421--434},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {29},
     number = {4},
     year = {1995},
     mrnumber = {1346277},
     zbl = {0842.65023},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1995__29_4_421_0/}
}
TY  - JOUR
AU  - Dai, Hua
TI  - About an inverse eigenvalue problem arising in vibration analysis
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1995
SP  - 421
EP  - 434
VL  - 29
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1995__29_4_421_0/
LA  - en
ID  - M2AN_1995__29_4_421_0
ER  - 
%0 Journal Article
%A Dai, Hua
%T About an inverse eigenvalue problem arising in vibration analysis
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1995
%P 421-434
%V 29
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1995__29_4_421_0/
%G en
%F M2AN_1995__29_4_421_0
Dai, Hua. About an inverse eigenvalue problem arising in vibration analysis. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 4, pp. 421-434. http://www.numdam.org/item/M2AN_1995__29_4_421_0/

[1] G. Srang, 1980, Linear algebra and its applications, Academic Press, New York. | MR | Zbl

[2] K. J. Bathe and E. L. Wllson, 1976, Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, New Jersey. | Zbl

[3] D. H. F. Chu, 1983, Modal testing and modal refinement, American Society of Mechanical Engineers, New York.

[4] A. Berman and W. G. Flannely, 1971, Theory of incomplete models of dynamic structures, AIAA J., 9 pp. 1491-1487.

[5] M. Baruch and I. Y. Bar-Itzhack, 1978, Optimal weighted orthogonalization of measued modes, AIAA J., 16, pp. 346-351.

[6] M. Baruch, 1978, Optimization procedure to correct stiffness and flexibility matrices using vibration tests, AIAA J., 16, pp. 8-10. | Zbl

[7] F. S. Wei, 1980, Stiffness matrix correction from incomplete test data, AIAA J., 18, pp.1274-1275. | Zbl

[8] M. Baruch, 1982, Optimal correction of mass and stiffness matrices using measured modes, AIAA J., 20, pp. 1623-1626.

[9] A. Berman and E. J. Nagy, 1983, Improvement of a large analytical model using test data, AIAA J., 21, pp.1168-1173.

[10] Dai Hua, 1988, Optimal correction of stiffness, flexibility and mass matrices using vibration tests, J. of Vibration Engineering, 1, pp.18-27. | MR

[11] Dai Hua, 1994, Stiffness matrix correction using test data, Acta Aeronautica et Astronautica Sinica, 15,pp. 1091-1094.

[12] Zhang Lei, 1987, A kind of inverse problem of matrices and its numerical solution, Mathematica Numerica Sinica, 9, pp. 431-437. | MR | Zbl

[13] Zhang Lei, 1989, The solvability conditions for theinverse problem of symmetric nonnegative definite matrices, Mathematica Numerica Sinica, 11,pp. 337-343. | MR | Zbl

[14] Liao Anping, 1990, A class of inverse problems of matrix equation AX = B and its numerical solution, Mathematica Numerica Sinica, 12, pp.108-112. | MR | Zbl

[15] Wang Jiasong and Chang Xiaowen, 1992, The best approximation of symmetric positive semidefinite matrices with spectral constraints, Numer. Math, - A.J. of Chinese Universities, 14,pp. 78-86. | MR | Zbl

[16] R. A. Horn and C. R. Johnson, 1985, Matrix analysis, Cambridge University Press, New York. | MR | Zbl

[17] J. H. Wllklnson, 1965, The algebraic eigenvalue problem, Clarendon Press, Oxford. | MR | Zbl

[18] J. P. Aubin, 1979, Applied functional analysis, John Wiley, New York. | MR | Zbl

[19] N. J. Hlgham, 1988, Computing a nearest symmetric positive semi-definite matrix, Linear Algebra Appl., 103, pp. 103-118. | Zbl

[20] J. H. Wllkinson and C. Reinsch, 1971, Handbook for automatic computations, vol. II, Linear Algebra, Springer-Verlag, New York. | MR

[21] F. Chatelin, 1993, Eigenvalues of matrices, Wiley, Chichester. | MR | Zbl