@article{M2AN_1995__29_1_63_0, author = {Astruc, Thierry}, title = {Existence of regular solutions for a one-dimensional simplified perfect-plastic problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {63--96}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {29}, number = {1}, year = {1995}, mrnumber = {1326801}, zbl = {0817.73017}, language = {en}, url = {http://www.numdam.org/item/M2AN_1995__29_1_63_0/} }
TY - JOUR AU - Astruc, Thierry TI - Existence of regular solutions for a one-dimensional simplified perfect-plastic problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1995 SP - 63 EP - 96 VL - 29 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1995__29_1_63_0/ LA - en ID - M2AN_1995__29_1_63_0 ER -
%0 Journal Article %A Astruc, Thierry %T Existence of regular solutions for a one-dimensional simplified perfect-plastic problem %J ESAIM: Modélisation mathématique et analyse numérique %D 1995 %P 63-96 %V 29 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1995__29_1_63_0/ %G en %F M2AN_1995__29_1_63_0
Astruc, Thierry. Existence of regular solutions for a one-dimensional simplified perfect-plastic problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 29 (1995) no. 1, pp. 63-96. http://www.numdam.org/item/M2AN_1995__29_1_63_0/
[1] Thèse. Université de Paris-Sud.
, 1994,[2] Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity, Archiv for Rational Mechanics and Analysis. | MR | Zbl
, 1989,[3] Duality and limit analysis in plasticity.
and , 1989,[4] Convex function of a measure and its application, Vol. IV, Indiana journal of Mathematics.
and , 1984,[5] Convex analysis and Variational problems, North-Holland, Amsterdam, New York. | MR | Zbl
and , 1976,[6] Non-linear systems of the type of the stationary Navier-Stokes system, J.-Reine-Angew -Math. | MR | Zbl
and , 1982,[7] The constrained least gradient problem, Non-classical Continuum Mechanics. | Zbl
and , 1987,[8] Dual spaces of stresses and strains with applications to hencky plasticity, Appl. Math. Optimization, 10 1-35. | MR | Zbl
and , 1983,[9] Topological Method in the Theory of non-linear Integral Equations, Pergamon Student Editions, Oxford, London, New York, Paris.
, 1963,[10] Existence, uniqueness, and regularity for functions of least gradient, J.-Reine-Angew.-Math. | MR | Zbl
, and , 1992,[11] Existence and regularity of solutions for plasticity problems, Variational Methods in Solid Mechanics.
, 1980,[12] Problèmes Variationnels en plasticité, Gauthier-Villars, english version.
, 1985,[13] Functions of bounded deformations, ARMA, 75, 7-21. | MR | Zbl
and , 1980,