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MATHEMATICALMOKUJNGANDNUftffinCALANALYStS
MOOtUSATH3HMATWMATtQU€ETAHAl.YS£HUMEWQUE

(Vol 28, n° 5, 1994, p 557 à 573)

ON THE CONVERGENCE OF A MIXED FINITE ELEMENT METHOD
FOR REISSNER-MINDLIN PLATES (*)

by C. LOVADINA C)

Commumcated by F BREZZI

Abstract — We consider a mixed fimte element method, proposed by Weissman and Taylor,
to approximate the solution of the Reissner-Mindhn plate problem Only the limit problem of
« zero thickness » is studied For this case we provide a convergence re suit for transverse
displacements and rotations, thus showing that the element is locking-free

INTRODUCTION

The Reissner-Mindlin theory is widely employed by engineers in connec-
tion with plate problems. However, it's commonly accepted that finding a
good finite element scheme is not at ail a trivial task. Indeed, many methods
fail the approximation whenever the plate thickness is « too small », because
of the well known shear locking phenomenon (cf. [8]). Thus, development of
gênerai procedures to avoid this problem is still an active area of research. A
lot of methods have been proposed so far, but, even if numerical tests show
that they work properly, most of them are lacking a rigorous proof of
convergence and stability. This is the case of a scheme proposed by
Weissman and Taylor (cf. [11]).

The aim of this paper is to provide a first analysis for the above method,
relatively to a clamped plate.

An outline of the paper is as follows. In section 1 we briefly recall the
Reissner-Mindlin model. In agreement with the standard mathematical
practice (cf. [4], [5]), we introducé a «problem séquence», leading to a
well-posed limiting problem. In section 2 we describe the Weissman-Taylor
method only for a very simplified geometry. The scheme makes use of

(*) Manuscript received October 28, 1993.
0) Istituto di Anahsi Numenca del CNR, 27i00 Pavia, Italy
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558 C LOVADINA

Wilson's nonconformmg element One could perform a direct analysis by
means of the usual techniques for nonconformmg éléments (cf [9])
However, we prefer to statically condense the internai degrees of freedom,
so that we work on a conformmg formulation In section 3 we perform our
error analysis for the hmiting problem and get an optimal convergence resuit
for transverse displacements and rotations (proposition 3 1)

Throughout the paper, the letter c will dénote a constant independant of
h and t, not necessarly the same at each occurence

1 THE REISSNER MINDUN MODEL

Let us dénote with A = Q, x ] - til, til [ the région in ̂ 3 occupied by an
undeformed elastic plate of thickness t > 0 The Reissner-Mmdhn model
descnbes the bending behaviour of the plate m terms of the transverse
displacements and of the fiber rotations normal to the midplane O From a
rnathematical point of view, the problem consists in finding the couple
(û(t\ w(t)), mimmizer of the following functional

- f
JA

f3w(t)dxdydz

over the space (//o(/3))2 x Hl{O) (clamped plate)
In (1 1) we have posed
(i) # and w are the fiber rotations and the trans verse displacements,

respectively
(u) a(., . ) (Hl(ü)f x (//J(/2))2-> m is a bihnear continuous form

defined by

a(-d;, v) =
E

{ ( + v 1- v 1
in 1 \ à* dy ) dx \ dx dy ) dy12(1 -

dVl

where -& = (•^1, ^2X ̂  is the Young's modulus and v is the Poisson's ratio
(0 < v ^ 1/2 )

££
(m) A = — with k shear correction factor (usually taken as 5/6)

(iv) ƒ = (0, 0, f3) is the transverse load per unit volume applied to the
plate
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A MIXED FTNITE ELEMENT FOR REISSNER-MINDUN PLATES 559

Note that, by Korn's inequality, a(. , . ) is indeed a coercive form over
HliD))2, i.e. there exists a constant a > 0 such that for ail # G (H\(O )f

This assures the existence of a unique couple (#(0> w(O) minimizing

The standard Euler équations associated with the functional II\ lead to :

PROBLEM nt: For t>0 fixed, find (£(*), w(r)) G (HI(O))2 x Hl
0(f2)

such that :

), Vu- 3

V( 3 , t? )e ( / / i ( /3)) 2x/ / i ( /2) . (1.2)

A straightforward discretization by finite éléments based on formulation
(1.2) typically locks in shear (cf. [8]). Therefore, we use hère a mixed
formulation derived by introducing the scaled shear stress

y =

as independent unknown. It turn s out that the problem is now changed into a
saddle point problem for the new functional

-[J
(1.3)

on (Hi
0(n))2xH{

0(n)x (L2({2))2.
In order to study a discretization based on formulation (1.3), we make the
folio wing choice for f3 :

Therefore, the associated Euler équations read as follows.

PROBLEM flt : for t>0 fixed, find ( £ , w, y ) E (Hl
0(f2 ))2 x Hl

0(I2 ) x

(L2(n))2 such that

(£ , 2 ) - (y, 2 ) = 0 V77 e (//0(/2))2

(y, Yi?) = (/\i>) VveHl
0(f2) (1.4)

A " L r2(y, J ) - (Yw - £ , J ) = 0 V i e (L2(/2 ))2 .

For problem 77, it's standard to obtain (c/. [5]) the
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560 C LOVADINA

PROPOSITION 1.1 : Given r > 0 , there is a unique triple (£ , w, y) in

(Hl
Q(f2)f x Hl

0(f2) x (L2(f2)f solution of the vanational system (1.4) •

Furthermore, it's also well-known that, due to our choice of loads, the
followmg uniform boundedness resuit holds (cf. [4]).

PROPOSITION 1.2 : Let (# (O, w(r), y(t)) be the solution of (1.4),

X7.sf ftv<? positive constants a and b, independent of t, such that

a ^ \\y(t)\\r + | | $ ( 0 | | l i n + l | w ( 0 | | j , n < &

where F' = H' :(div ; f2) is the dual space of F = H0(rot, f2 ) and it is

supphed with the norm

Proposition 1.2 allows us to perform a passage to the weak limit for
t - • 0 and thus to consider a virtual « limitmg problem », never used in the
engineering practice but very useful for theoretical purposes, especially as
far as an element tendency of suffenng from locking is concerned.

It's, in fact, straightforward to obtam (cf. [5]) the

PROPOSITION 1.3 (Problem flQ) :

Let (£o> wo> J o ) e ( # o W ) 2 xHl
0(f2)xH~l (div , 12) be the weak

limit of (&(t)9 w(t), y(t)\ that is

r (t) -* 7o weakly in ƒƒ" 1 (div ; ü ) for f -> 0

# (t) .+ ^ 0 weakly in (Hl
ö(f2 ))2 for f ̂  0

w(t) - • w0 weakly in HQ(I2) for t - • 0 .

Then (# 0 , vw0, ro) solves :

a(£o. 2 ) - < > !?> = 0 V77 e (H{
Ö{M))2

<ro. 5Ü> = <ƒ. ») VveHl
0(f2)

(¥w0 - û0, $) = 0 VseH1 (div ; /3 )

where < , ) represents the duahty painng between /ƒ" ! (div ; f2 ) and lts
dual space (which is again the usual L2 (f2 ) inner product when the functions
are smooth enough).
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A MIXED FINITE ELEMENT FOR REISSNER-MINDLIN PLATES 561

Moreover, w0 solves the Kirchhoff-type problem

EA2w0= ( 1 2 - v2)f in ft

w0 = 0 on 6/2
dw0

= 0 on ô / } .
dn

m
2. DISCRETIZATION OF THE PROBLEM

From now on, we will consider only the case of a square plate with edges
parallel to the coordinate axes (je, y) and of length L. Moreover a typical
mesh Th will be obtained by partitioning f2 into n x n equal squares, with
2h = Un.

Thus, for each square K e Th there is an affine map F K from the standard
référence square K = {(£, 77): | £ | =sl and 117 | $ 1 } onto K defined by

FK{L V)= (xK + h€,yK + hV) (2.1)

where (xKy yK) is the barycenter of K. As usual, from an assigned function
v : K -+ M we can get a corresponding function vK : K -> M by

In order to perform the analysis of the method proposed by Weissman and
Taylor (cf. [11]), we first need to introducé the following finite element
spaces :

rh = {yh e (L\n)f :yh\Ke (P.(K))2 VK e Th)

®h= {^,e Wl{n)f:ûh\Ke (Q{(K))2 VKeTh}

Wh= {wheHl
Q(n):wh\KeQl(K) VKeTh}.

We also consider the space of nonconforming bubbles defined by :

BNC= {veL2(n):v\KeSp<in {1 - f2, 1 - T ? 2 } VKeTh}

and we eventually construct

0,f = eh ® (BNC)2, W£ = W, © BNC .

Because of the non conformity of Wj*, we need to define a differential
operator

Y , , : ^ * - (L2(f2))2

vol. 28, n° 5, 1994



562 C. LOVADINA

where ¥h vh is the element by element gradient of vh, thus ignoring possible
discontinuities along the element interfaces ; we also define

ah(.,.):0hx ®h^m ah{ . , . ) = £ aK( . , . ) .
KsTh

We are now in the position of stating the Weissman-Taylor method.

PROBLEM WTh For t > 0 fixed, find (#fc, wk9 yh) e 0£ x W£ x Fh such

that

g \ / ^ yy fi ^ ) = o y ^ g j 1

where vhc is the conforming part of vh e

Remark : In their paper, Weissman and Taylor assume the loading term to
be L2-orthogonal to the nonconforming displacements. This is a very
restrictive assumption and even a constant load does not meet it. In what
follows, we shall show that a convergence resuit can be obtained whitout any
a priori orthogonality condition, but simply dropping out the contribution of
nonconforming bubbles to the loading term (cf. second équation of
(2.2)). •

Formulation of problem WT^ is not yet the final formulation on which we
will perform our error analysis. Our goal is to reach a conforming
formulation, i.e. one in which we do not deal with bubble functions anymore.
Even if calculations are rather tedious, the idea is very simple : it's just the
well known procedure of static condensation. We will proceed into two
steps.

Step 1 - Elimination of nonconforming rotations.
First of all, let's choose a basis for (BNC)2 once and for all.
Let's consider bt : K -> M defined by

(the factor 3/8 has been introduced in order to have bt dg drj = 1).

Set M = {{blK9 0), (0, blK)}1^2 where blK : K -• St is obtained from

bt hy FK:K^K,
It's easily seen that M is a basis for the space (BNC)2 and that one has
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A MIXED FINITE ELEMENT FOR REISSNER-MINDLIN PLATES 563

biK(x> y)dxdy = h2. Now, let us consider the first équation of System
K

(2.2) :

From the structure of ®% it's clear that

(i) There's a unique décomposition

e 6^ and £ G (BNC

(2.3)

with £ c e 6^ and £ w c G (BNC)2

(ii) ^ c = Z Z aiKVlNc,K where

K9 0 ) ; T?^C)/C = (b2K, 0 ) ;

bx K) ; 3^ C ï K = (0, ô2jf)

and the o^'s are uniquely determined real numbers.
Henceforth, choosing VNC,K

 a s t e s t functions, équation (2.3) becomes :

4

(2.4)

Note that the matrix cfj = [^(2^Cijf, 5"jvc, jc)]?,y = i ^s a diagonal non-
singular one, so that we have

*«*<£= (rA, 3Jvc.ic)ic-öjr(^c- ïïwc.jf) ' = 1> - M 4 . (2.4)'

Equations (2.4)' allow us to détermine the alK
9s (and so ̂ ^c [̂ ) in terms of

{ïc \K and yh\K. CoUecting all these local relations over K e Th, we can then
détermine ^^ c in terms of £ c and yh. If we now choose Vh ̂  ®h a s t e s t

functions in (2.3), we get

I I «,jfûjt(3wc.i. 2 c ) = (r*. 3c) ^Vc^@h- (2-4)"

Using (2.4)', équation (2.4)" becomes, after some (rather cumbersome)
calculations

ûC9 vc) - h2 P2 ^ (A$c, ATJC)K - (rA

K

+ h2l3l^(yh,A7lc)K = 0 Vllce0h (2.5)
K

vol 28, n° 5, 1994



564 C LOVADINA

where the /3/s are positive constants and A is exactly the Imear operator
induced by a ( . , . ) in the natural way Using (2 4)' again, but this time in the
third équation of (2 2), we get

, Vh) ~ (VA wh - ûc> sh) -h
2?^ (A#c, sh)K

K

(2 6)

where /33 is constant and F o is the {L2{O ))2-orthogonal projection operator
onto the piecewise constant functions

Remark In the followmg, we will explicitely use the value of
/32 For completeness, let us display all the /3/s values

7

where H = — D
12(1 - ^2)

Step 2 Elimination of nonconforming transverse displacements

Looking at the second équation of (2 2), we find that

This fact suggests us to split the finite element space Fh into
rh = F* © YhBNc where F* is easily recognized to be

F*= {yhe(L2(n))2 yh\K e Qo X(K) x Q, 0(K) VKe

(Qt j(K) is the space ol polynomials, dehned on K, ol degree ^1 m
x and of degree =s y in y)

In order to eliminate the non conforming part of wh, ït's then sufficient to
use F % both as trial space and as test space for the approximated shear stress

What we have done so far can be summanzed m the

PROPOSITION 2 1 Let (£A, wh, yh) e 0ff x Wff x Fh be solution of

problem WTth If Ûh = Qc + ^NC
 and wh ~ wc + WNC> then

(£c> wc> 7h) e ®hxWhx F* solves

M2 AN Modélisation mathématique et Analyse numérique
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A MIXED FINTTE ELEMENT FOR REISSNER-MINDLIN PLATES 565

PROBLEM CWTth

a{ûc* 3c) ~ k1 $2 X (A#o ^3C)JC ~ (7h> Vc) +
K

(y*. V»c)= <ƒ, vc)

- 1 t21 t2(yh, sh) + h2 j83 £ (Po yA, sh)K - (Vwc - * c , sh) -

\ (2.7) •

Remark: Note that, because VJNC £ C^oC^))2' static condensation of
nonconforming bubbles leads to a method in which a consistency error is
introduced : it's indeed suddenly seen that the solution of the continuous
problem (cf. équations (1.4)) does not solve system (2.7), since (31 ̂  (B} for
i # j • n

We haven't yet shown that Weissman-Taylor problem admits a unique
solution, at least for the case t :> 0 ; to do this, we use the formulation (2.7)
above. We need

LEMMA 2.1 : There exists e > 0, independent of h, such that

a{#h, ûh) - h2 Y^PiiAûk, A^h)K^ sa(ûh, ûh) V £ A G 0h .
K

Proof : It's cearly sufficient to prove the lemma locally. First of all we
have

h2 p2(Aûh, Aûh)K = Pi(Aèh Aêh)k

and

so that we just need

(1 - e)ak(èh, êh) - P2(Aêh, Aêh)k ^ 0

Vêh e (Qx(k)f for some e 0 < s < 1

vol. 28, n° 5, 1994



566 C LOVADINA

If we now split êh = êx + ê2 into lts lmear and pure bilmear part,
respectively, ït's suddenly seen that

- e) aK(êh, êh) - p2{Aèh, Aêh)K ^

^ (1 - s)aK(ê2, ê2) - p2(Aê2, Aê2)K (2 8)

Let us put ê2 = ax{Ç 17, 0) 4- a2(0, £77) = ax vx + a2 v2

Because we have

a(vu vr) = a(v2, v2), (Avu Avx) = (Av2, Av2)

and

(Avl9Av2) = a(vx, v2) = 0,

then we get from (2 8) that we only need

(1 - e)a(vl, v1)-p2(AvuAv1)^0 (2 9)

Recallmg that /32 = 2 H~x{\ ~ v +2 v2)!3(\ + v )2, a calculation shows
that (2 9) is true whenever 0 < e < 4/5 The proof is complete •

The following proposition holds

PROPOSITION 2 2 For t > 0 fixed, there is one and only one solution
w c , yh) e 6>̂  x Wh x T^ o/ yyjfew (2 7)

Proof Assume that ƒ = 0 and let ( £ c , wc, yA) be a solution of (2 7)

Choosing ric = &c, vc = wc , sh= yh in (27) and adding the three

équations so obtamed, we get

+ À" ' f 21?*IIJ fl + ̂ 3 Z l l ^ o n | o K = o (2
K

By lemma 2 1

so that # c = y^ = 0 From the third équation of (2 7) we finally get

Vwc = 0, 1 e wc = 0 •
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A MIXED FINITE ELEMENT FOR REISSNER-MINDLIN PLATES 567

3. ERROR ANALYSIS

We will consider only the « limitmg problem » (t = 0 ). Recall that the
continuous problem is :

PROBLEM 770. Find (£0, w0, yQ) e (H\(n )f x H^Û) x H~l (div ; O )

such that

a(ûo, v)- <y0, Z?> = 0 V5 e {H^îî))2

(?o, Yv) = (f, v) VveHl
0(f2) (3.1)

<Vw0 - - * 0 , s> = 0 V j e / T ^ d i v , O)

while the corresponding discretized problem is

PROBLEM CWToh Find (£,,, wh, yh)e 0hxWhx r% such that

a(#h, vh) -h2 )82 ̂  (A#h, Ar,h)K - (yh, r,h) +

(n, Yvh) = (ƒ,

- h2 Pi £ (A$A, A v = o v ̂  G r*

\ (3 2)

Remark It's easily seen that the couple (^A, vwA), part of the solution of
problem CWToh, is uniquely determmed by équations (3 2). Unfortunately,
this is not the case for yh Nevertheless, the L2-projection of yh over the

piecewise constant functions is unique : see, for instance, the third équation
of (3.2). D

Our error bound is

PROPOSITION 3.1 . Let (£0, w0, y0) be the solution of problem Üo and

(Uk* wh* 7h) a solution of problem CWToh, then there exists a constanc c

independent of h, such that one has
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568 C. LOVADINA

Before turning to the proof of proposition 3.1, let us recall some known facts
about the method of Bathe-Dvorkin {cf. [3]), which we will use to perform
our error analysis. In that method the space

Qh= {j*he

is used to approximate shear stress. Note that Qh ̂  r% and they are locally
built up by the same functions. Because of the conformity Qh ç //0(rot ; O ),
it's then possible to define an interpolation operator

Rh:W=(f.

locally determined by

{y -Rhv)-lds = 0 Vet edge of KG Th (3.4)
Je,

satisfying

(i) || g -Rh r\ || ^ ch || g || 1 V g e W , (3.5)

(ii) if ij e W with rot TJ = 0 is smooth enough, then there is (g7, Ü/) G
&h x W^ such that

/• II „. M /^ i_ H H /^ ^\

ui ! / - i z / i i i ^^ 1 1 ii g ii 3 »P-° ;
1 ^ g/ = Vi?, . (3.7)

For a detailed discussion of Bathe-Dvorkin element, see for instance [3], [6]
and [7].

We need the following

LEMMA 3.1 : Under our hypotheses on {Th} and il,

where Uh : (//J(I2))2 -> Fh is the usual L2 {12 ^projection.

Proof: It's sufficient to prove the lemma on the référence element,
because in our case we have

\ and Rhêh = Rhûh\K.
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A MIXED FINITF ELEMENT FOR REISSNER-MINDLIN PLATES 569

Let (Rh Sk)l and {Ûh êh)x be the first components of Rh êh and Ûh êh,

respectively. If Sh = (êl9 ê2)e (Q^K))2, from (3.5) we get

)i (0,

i (O, - 1 ) =

where ûl is the value of ût at the i-th node

On the other hand

Whûh

so that

, v) = \

),-!) =

(3.8)

(3.9)

But both (Rh êh)x and (Ûh êh){ belong to Q0^(K% so that (3.8) and (3.9)

imply (Rh ê^ = (Ûh êh)t. A similar argument shows that (Rh éh)2 =

(Ûh êh)2. The lemma is proved. •

If we now introducé the notation

hiëh* ™h> J h ; 3* . *>k

(yA, 5u„ - 3fc) + /î2

- •*„ sh) - h2

~h2

vol. 28, n° 5, 1994



570 C. LOVADINA

then our finite element method is

<s*h(ûh, wh, 7h ; VH> vfo sh) = (ƒ, vh) V (vh, vh, sh) .

At this point, we can finally give the

Proof of proposition 3.1 ; Let us set

ç# = üh - Û! ; £w = wh - wi ; ây = y h - r/ (3-10)

where {-dj, Wj) are the interpolations of (£0, w0) as in Bathe-Dvorkin
method, and yT = Po y0. It's clear that (cf lemma 2.1)

for some a > 0 independent of h,
Add and substract s£hi^o* wo> ^o > ^#' ew> ^y) t o m e right hand-side of

(3.11) ; taking into account (3.1) and (3.2) we then get :

where

î»-̂  \ /3 (À 1*)" J P ^ * A Pi \ fi {*\/ 4 P ^ *
1 — / #^ 2 V"^ — / * "^ — ^ /Jt * "^ 2 — / » 1 v / / ' •^ — i? //T '

A5 = a(&0 - &j, s#) ; A6 - (y0 - y

Let us estimate the terms above
(A i ) On each K E Th we have

Thus

\AX\ ^ c h 2 H^oII2 /2 + T lUtflli /2 w i t h a i : > 0 t o b e c h o s e n • (3.12)

(A2) We have (y7, Ae^)^ = (y0, ^^^)/c because

^ o T o ^ r / and As^|^ e (P0(K)f .
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A MIXED FINITE ELEMENT FOR REISSNER-MINDLIN PLATES 571

Then, by a simple scaling argument,

l A 2 l ^ c h | | r o | | O f / 2 l l ^ l l i i / 2 ^ c h 2 H r o | l o ^ +

+ — \BQIIj ^ with <z2 >• 0 to be chosen . (3.13)

(A3) One has

(£ r , Atf,)* = (P o ey, Ag , )* = (P o e r , A ( ^ 7 - ^ 0 ) ) ^ +

so that

| fl+ÇA | |po £ r | | fl

with a3 > 0 to be chosen . (3.14)

(A4) From (r7, er)A: = (r/, /'o ïyh w e get

4l - c h 2 | | r o | | o fl \\Poâ7\\o ^ c h 2

with a4 > 0 to be chosen . (3.15)

(A5) It's straightforward to obtain

AÎ.n

with ö5 > 0 to be chosen . (3.16)

(A6) We have (y0 ~ y7, V(w^ - w7) - (£* - ^ / ) ) . Now, from the third

équation of (3.2) we see that Vw^ = Uh &h + , ^ , where ^ is piecewise
constant. By lemma 3.1 we obtain

K l = (ro - 2

^ c h 4 | |yo | |J ^ + y IU^Hi,/2 with a 6 > 0 to be chosen .

(3.17)

(A7) We have A7 = (ey, Vw7 - /Tfc ^ z ) and so, by lemma 3.1
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A1 = (ey9 Rh -Qj - Rh-&i) = 0. If we now take au ..., a6 small enough,
estimâtes (3.12)-(3.17) together with (3.11) and (3.6) give

^ch(\\#4xn+\\y4on + h\\y0ln). (3.18)

Therefore, by the triangle inequality

As far as an estimate for transverse displacements is concerned, let us
consider the third équation of (3.2). We have locally V ^ = IIh &h —
h2 (31A-âk + h2 p3 Po yh on each K e Th, so that

\\vwh - Ywj\\0K = \\nh $h -Rhûj~ ^P.AÛH + h2 p3 pQ

^ (lemma 3.1 and scaling arguments )

Squaring and summing up over K e Th, we get

and finally, by (3.18) and the triangle inequality,

IK-Wo||Ifi,*ch<||tfoll3.fl + I N U + MWI, n) (3.20)
(here we have also used Korn's inequality).

Taken together, estimâtes (3.19) and (3.20) complete the proof of
proposition 3.1. •

CONCLUSIONS

We have considered a mixed method for the Reissner-Mindlin plate
problem, proposed by Weissman and Taylor. For this scheme, we have
developed our analysis only for the limit case t = 0, proving that the
transverse displacements and the rotations converge with optimal rate. Even
if we haven't dealt with the problem of uniform convergence m the plate
thickness t, we believe that the behaviour for t = 0 is indeed very indicative
of an element performance.
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