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(Vol. 28, n° 4, 1994, p. 441 à 461)

SOME ALGORITHMS FOR DIFFERENTIAL GAMES
WITH TWO PLAYERS AND ONE TARGET (*)

by P. CARDALIAGUET O, M. QUINCAMPOIX (2), P. SAINT-PIERRE

Cominunicated by R. TEMAM

Abstract. — We provide algorithms finding victory domains of a differential game with two
players and one target. For doing this we do not need to compute trajectories of the game. We
present two kinds ofalgorithms. The algorithms in continuons case give the victory set as a limit
of an suitable decreasing séquence of closed sets. The algorithms in discrete cases give discrete
sets approximating the victory domain. In the two cases, we prove convergence results.

Résumé. — II s'agit dans cet article de présenter des algorithmes permettant de déterminer
un ensemble de victoire pour un jeu différentiel à deux joueurs et une cible. Ces nouvelles
méthodes fournissent l'ensemble de victoire sans « calculer » de trajectoires. Deux types
d'études sont exposés : une version continue où l'ensemble de victoire est la limite d'une suite
décroissante de fermés et une version discrète où cet ensemble est approché par des ensembles
discrets. Dans ces deux cas des résultats de convergences sont prouvés.

1. INTRODUCTION

We consider the following dynamical System :

) , u ( t ) , v ( t ) ) 9 w h e r e u ( t ) s U a n d v ( t ) s V . ( 1 )

Let O be an open target. Two players, Ursule and Victor control this
dynamical System throught their respective controls u and u. Ursule wants
the System to reach the target ft, Victor wants the System to avoid
12, namely he wants the state variable x to remain in K := Rn\£è.

The main topic of this paper is to provide some aîgorithm computing
discriminating victory domains used in differential gaines. We define
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Victor's Discriminating victory set as the set of initial condition x0 e K, such
that there exists a strategy choosed by Victor such that, for any measurable
control w(. ) choosed by Ursule, the associated trajectory stays forever
inK.

We know ([7], [1] and [16] for time dependent dynamics) that this victory
set, for some classes of causal stratégies, is the largest closed subset
A of K satisfying the following tangential (3) condition (4) :

VxeA, Vw G U, 3v e V, ƒ (x, u9v)e TA(x). (2)

We shall call this set the discriminating kernel of K and we dénote it by
Discf (K). We refer to [7] for the interprétation of Discy(AT) in term of
Victor's discriminating victory set. These two sets are equal for Krassovski-
Subbotin positional stratégies defined in [13] and for nonanticipative
stratégies used in [9] (see also [21] and [8]). The goal of this paper is not to
explain this interprétation but, knowing it, the main aim of this paper is to
compute the set of initial conditions such that Victor can win by discriminat-
ing victory.

We provide in this paper two kinds of algorithms Computing victory sets.
The first kind of algorithms is similar to algorithms explained in [10] for

viability kernels and in [18] for invariance kernels (5). This is the case when
the dynamics only depend on one control.

The main idea of the algorithm is the following :
For a given closed set K and for a point x s K, if the tangential condition is

not fulfilled, it is possible to compute some r(x)=>0 such that the bail
B(x, r(x)) does not meet Discy(£"). We obtain a set Kx by substracting to
K all such open balls. This r (x) dépends only (6) on
sup inf {/(x, M, t?), v ) , on the Lipschitzian constant of ƒ and on an upper

u v

bound of ƒ in K. By iterating this construction, we can define recursively a
decreasing séquence of closed sets Kn. We prove that this séquence
converges to Disc ƒ (AT).

The second kind of algorithm is related to discretization methods (cf. [20]
and [19]) to compute the viability and invariance kernels of a closed
set A:.

(3) Let us recall the définition of the contingent (or Bouligand's) cône at x to A :

TA(x)*= \ve R"|lim inf dix + hv, A )lh = 0 1 .

(4) We shall write further this tangential condition using proximal normals.
(5) The reader can refer to [3], for the définitions of viability and invariance kernels.
(6) Where v is a proximal normal to K at x,
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DIFFERENTIAL GAMES WITH TWO PLAYERS AND ONE TARGET 443

The main idea is the foilowing : we associate with (1) a « discretized
équation » of the foilowing form :

Vn e N, xn+ j = g(xn, un, vn), where uneU and vn e V . (3)

Then, we define suitable discrete discriminating kernel Y>ïscg(K) of a closed
set K. It is easy to prove that this victory set for Victor is the largest closed
subset of K satisfying the foilowing condition :

Vx e DiscF (K\ Vw e U9 3v e V such that g (jt, w, v ) e DiscF (K). (4)

We use this condition to define a decreasing séquence of closed sets
converging to the discrete discriminating kernel of a closed set K. An
example of similar algorithm, for a discrete dynamic pursuit game, is
provided in [14], by using different technics.

In the third part of our paper, we prove that discrete discriminating kernels
approximate the discriminating kernels of (1), for suitable choice of g.

We want to underline that these methods differ sharply from classical
methods used in differential games theory. Classical methods (cf [4]) consist
in constructing a banier (Le., the boundary of the discriminating or the
leadership kernel) which is assumed to contain optimal solutions (7) and
after this it is necessary to verify that the set defined is the victory set. In our
methods, we do not need to find solutions of (1). The reader can see [14] and
[15] for some other methods.

For doing this, we mainly use set-valued analysis and viability theory
(cf. [2] and [3]).

2. DISCRIMINATING KERNELS FOR DIFFERENTIAL GAMES

This section is devoted to state basic results and assumptions concerning
discriminating domains and kernels.

Since our purpose is to establish algorithms, we do not try to have the
weakest assumptions, but assumptions such that our two algorithms con-
verge. For more detailed study the reader is refered to [6].

2.1. Assumptions

We study absolutely continuous solutions to the foilowing system

x ' ( t ) = f ( x ( t \ u ( t \ v ( t ) \ w h e r e u ( t ) s U a n d v ( t ) e V
for almost every t 2= 0

(7) FOP a ngorous proof of The barrier phenomenon, see ([17J) in the case of the viability
kernels, and ([6]) in the case of the discriminating and leadership kernels.

vol. 28, n° 4, 1994
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where the state-variable x belongs to X := R" and U and V are compact
subsets of two finite dimensional metric spaces.

We assume that the function f :Mn x U xV ^>Un is f-Lipschitzian.
Define

f(x, u,v)

for ail x e Un and for ail u e U. We assume hère that F (x, u) is convex for ail
x and ail u. We assume furthermore that ƒ is bounded, i.e. there exists a
constant M > 0 such that :

SUp SUp SUp II ƒ (X, M, t?)|| sSÀf . (5)
i e / ? " u e U v e V

2.2. Discriminating kernels

Let ^ b e a closed subset of R*.

DÉFINITION 2.1 : Suppose assumptions of section 2.1 holds true. A closed
set K is a discriminating domain for (1) if and only if for any x e K, for any
u EL U there exists a solution to

x'{t)zF{x{t\u) (6)

starting from x wkich remains in K.
Thanks to Viability Theorem, we can characterize discriminating domains

through a tangential condition :

PROPOSITION 2.2 : Suppose assumptions of section 2.1 holds true. A closed
set K is a discriminating domain if and only if

Vxe K, Vv eNPK(x), sup inf <ƒ(*, u, v\ v) =s 0 , (7)

where NPK(x) is the set of the proximal normals (8) to K at x.
Notice that 0 G NPK(X). For any x.
When K is not a discriminating domain we define by Discf{K) the largest

closed discriminating domain contained in K. When K is the complement of
an open target 12 this set is actually Victor's discriminating victory set
(cf. [7] for a detailed proof).

(8) If A is a closed set, let us recall that

NPA(x) ••= {v e UT such that dA{x + v) = || v || } .
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2.3. Convexity of Discriminating kernels

Following [10], we obtain under suitable convexity assumptions, that the
discriminating kernel is a convex set.

PROPOSITION 2.3 : Suppose that assumptions of section 2 .1 , hold true. IfK
is a convex set and F (x, u) is a convex map (9) for any u.

Then Disc,(jRT) is convex.

Proof : We know that {cf. the construction of discriminating kerneis in [6])

where sets Vn are defined by

According to [10] section 3, the viability of a convex set for a convex set-
valued map is convex. Consequently, any Vn is convex and so is
Discf (K).

Q.E.D.

3. AN ALGORITHM IN CONTINUOUS CASE

Our goal is to provide an algorithm finding the set Disc ƒ (K) which is the
largest subset of K satisfying the following tangential condition :

VJC G Disc,(AT), V* e NPm m ( x ) , sup inf <ƒ <*, u9v),v)*z0. (8)
u e U v e V

This approach is an extension to differential games of results already
presented in [10] and in [18].

3.1. Approximation

We want to underline that at each step of the algorithm, we only use the
knowledge of K and ƒ because we do not know in advance Disc, (iO.

Let us dénote by K the set of points x of BK which do not satisfy (7), Le.,

3v e NPK(x) with sup inf <ƒ(*, u, v\ v) > 0 .

(9) A set valued map is convex if and only if its graph is convex,

vol. 28, n° 4, 1994
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LEMMA 3.1 : Let x belong to K. Define the following nonnegative number

a(K, x) := sup sup inf (f(x, uy v\ v) .
v e N P K ( x ) u e U v e V

II " II * *

Then

a ( ^ X \ (9)
M + i

Proof of the lemma: Fix x e K. Consider veNPK{x) such that
a := sup inf (f (x, w, V), V} > 0, and | |^ | | ^ 1. There exists some û in

« e U v <=V

U with inf <ƒ(*:, w, t; ), ^> = a.
veV

Let j> belong (10) to J~[ (x + »*). It is easy to nitice that x -\~ v -y s
Disc ƒ<JO

NPUisCfiK)(x). Hence because Dis^(^T) is a discriminating domain, for any
u G U, there exists v G V such

v -y) = </(y, M, I; ),»/> + </(y, M, I; ), x - j > .

Hence because ƒ is bounded by Mt for /̂  = «, there exists some
v with

0^ (f(y, ü, v% v) -M\\x~y\\ .

Since ƒ is f-Lipschitzean and || v || =s= 1,

consequently

(/(x, w, v\ v) a

Since this results still holds true for any v which does not satisfy the
tangential condition the proof is completed.

Q.E.D.

( 1 0 ) W e d é n o t e b y Y\ U ) , t h e s e t o f p o i n t s y € A s u c h that ||JC - y \ \ = d(A, x).
A
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3.2. Construction

We define a decreasing séquence of closed subsets of K.

(10)

where Kn dénotes the set of points x of Kn where the tangential condition (7)
is not fulfilled (u) with Disc/(^T) replaced by Kn.

It is easy to notice that Disc ƒ (AT) <= Kn and consequently K^ :

contains Dïscf(K).

3.3. Convergence

We prove the convergence of the algorithm.

THEOREM 3.2 : Suppose assumptions of section 2.1 hold true. Then :

Proof : It is enough to prove that A^ is a discriminating domain. Fix
x e KÇQ and let us prove that for any v e NP K (x),

0 =* a := sup inf (f(x, «, v), v) .
u v

Fix v := A v, with A e ]0, 1 [ such that || v\ <: 1. Let us point out that the
projection onto Kœ of x + v is equal to x. For n larger enough,
x + v does not belong to Kn, and we set xn ^ Y[ (x + *7)- Since

Y\ (x + ï7) = x, it is obvious that lim xn = x.

Define vn := x + ï7 - xn. Then *>„ belongs to NPKn(x„) and

*n, A : j ^ sup inf (f{xn9 u, v), vn) .

(") Namely :

Bu G N/'j^ (A) with sup inf <ƒ(*% w, i? ),

vol. 28, n° 4, 1994
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Since llx — xJI 2= — 0
n from the construction of the séquence {Kn\ we

obtain lim a{xm Kn) = 0. In particular, the limit of the séquence
n

sup inf (j (xn, u, v), x + v - xn) is non-positive. But this limit is equal to
U V

sup inf (f(x, u, v% v), which is non-positive. This complètes the proof.
M V

Q.E.D.

4. THE DISCRETE TARGET PROBLEM

We now consider the discrete dynamical system :

Vn e N9 xn+l = g (xm un, vn) , where u„ sU and vn e V . (11)

We shall dénote by 3c the séquence (xtt)w. Let fl be an open target of
X. Two players, Ursule and Victor control this discrete dynamical system
through their respective controls u and v, Ursule wants the system to reach
the target. Victor wants the system to avoid it, namely he wants the system to
remain in K = X\f2.

We study Victor's discrete discriminating victory set, Le., the set of points
x of K such that a strategy t?(. » . ) : X x U -> V exists, such that for any
séquence (un)n, the solution (xn)n of

(12)

remains in K. Let us notice that this définition is similar to the one used in
[14].

Set :

VxeX, V«ef/5 G(x, u) = \^J g(x, u, v). (13)

We shall say that a closed set S is a discrete discriminating domain for
G if S enjoys the following property :

Vx e S, VM e U9 G (x, u) n S # 0 . (14)

It is easy to deduce the following.

PROPOSITION 4.1 : A closed set S is a discrete discriminating domain if and

onty /ƒ, for any x0 ofS, a strategy v{.,.):XxU-+V exists, such that, for
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any séquence {un\ of U, the solution (x„)WSe0 of (12) starting front
x0 ramains in S, i.e., xn belongs to S for any n^O .

Proof : Assume that S is a discrete discriminating domain. For any
x of 5 and any u of U9 the intersection G(x, u ) n S is nonempty. Thus we can
choose some v(x, u) of F such that g{x, u, v(x, u)) belongs to S. For any
x0 of S, for any séquence (un)n, the solution of (12) remains in
S. So we have defined the desired strategy v (. , . ).

Assume now that, for any x0 of 5, there is a strategy v ( . , . ) such that, for
any séquence (un)n of U, the solution (xn)n^o of (12) starting from
x0 remains in S. Let u belong to U9 and define the séquence un = u for any
n. Then the solution xn of (12) remains in S. Thus xx = g(x0, w0, V(X09 U0))

belongs to S and to G(x0, u). So G(x0, w)nS is non-empty for any
x0 of S and any u of U> and S is a discrete discriminating domain.

Q.E.D.
If K is not a discrete discriminating domain, it is possible to define the a

largest discriminating domain contained in K and furthermore the largest
one.

PROPOSITION 4.2 : Let K be a closed set and G{., . ) : X x U^ X be a
upper semi-continuous set-valued map with compact values. Then, there
exists a largest closed discrete discriminating domain contained in K. We
cM this set discrete discriminating kernel of K, and we dénote it
DiscG(/Q.

Proof : Let us consider the decreasing séquence of closed sets Kn defined
as follows :

— ÏC

n + l*= {xeKn\VueU,G(x,u)nKn*0} , Vn =* 0 .

Since G is upper semi-continuous with compact values, sets Kn are closed.
Let us define K^ := f~̂  Kn, the decreasing limit of the Kn. We claim that

Km satisfies the définition of discrete discriminating kernels.
In fact it is clear that if some D c= K is a discrete discriminating domain, it

is contained in every Kn and consequently in K^.
Let us prove that Km is a discrete discriminating domain, namely that it

satisfies condition like (14).
Let x belong to K^, and u belong to U. We have to show that

G(x, u) n Km is nonempty. Since x belongs to Km for all n, there exists
yn€ Knn G (x, u ). A subsequence again denoted yn converges to some
j , because G is semi-continuous with compact values. The point y belongs to
Km, since the séquence Kn decreases to K^, and belongs to G(x, w), since

vol. 28, n° 4» 1994
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and G( . , u) is upper semicontinuous with compact values. So

, u) n Kœ # 0 .

This means precisely that K^ is a discrete discriminating domain for G.
Q.E.D.

Now, we shall prove that this discrete discriminating domain can be
interpretated in term of Victor's discrete discriminating victory set.

DÉFINITION 4.3 : Let us posit assumptions of Proposition 4.2. Victor's
discrete discriminating victory set denoted by i^ff is the set of point
x0 e K for which a strategy v(.,.): XxU^V exists, such that, for any
séquence (un)ni the solution (xn)nss0 of (12) starting from x0 remains in K,
i.e. xn belongs to K for any nz*Q.

THEOREM 4.4 : Let K be a closed set and G ( . , . ) : X x U~> X be a upper
semi-continuous set-valued map with compact values. Victor's discrete
discriminating victory set is the discrete discriminating kernel of K.

Proof : From Proposition 4.1, we obtain if^v=> DiscG(K). To prove the

opposite inclusion, we shall prove that

X \ # £ => X\DÏscG ( /n .

Fix JC0 e ^\DÏscG(^T) and a strategy v(.9.):XxU->V. We shall define a
séquence (un)n such that the solution of (12) starting from x0 leaves
K in finite time.

Thanks to (15), DiscG(^O = f~^Kn. Since JC0 does not belong to

DïscG(K\ there is n0 such that x0 belongs to K„Q\KnQ + l. Thus there is

u0 e U with G(JC0, u0) n KnQ = 0. In particular, jq := g(x0, M0, V(XQJ M0)) does

not belong to KnQ. So there is nx <: n0 such that xl belongs to KtH\Kn] + t.
In the same way, we can define by induction a decreasing séquence

(nk) and séquences (uk) and (xk) such that :

V*, xk+ ! := g (xh uk, v(xh uk))

and xk belongs to Knj\JCnt+ t. Since (nk) is a decreasing séquence, there is
nk ^ no + 1 such that xk does not belong to ^o = A'. S o we have defined a
séquence (uk) such that the solution (xk) of (12) leaves K in finite time. This
ends the proof of Theorem 4.4.

Q.E.D.
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5. A DISCRETIZATION ALGORITHM

There is a natural way to approximate the discrete discriminating kernel of
a closed set K. We already used this idea to prove Theorem 4.4. We provide
these algorithms in a more gênerai framework.

The main motivation of studying the discrete target problem is the
approximation the discriminating kernel of any closed set. Theorem 5.2
states that the discrete discriminating domain of a closed set K for the set-
valued map x ̂ > x + rf (x, M, V) + <TT2B (where B is the closed unit bail
and where the constant a is computed bellow) converge to the discriminating
kernel of K for ƒ when r -• 0+ .

5.1. Approximation of the discrete discriminating kernel

Let ^ be a closed set and g : IR" x U x ^ -+Mn a continuous map,
U and V being metric, compact. Set as previously

Consider Un any séquence of subsets of U, such that :

Limsup Un = U . (16)
n -> oo

We define the following decreasing séquence of closed sets :

^+l = {xeK'n\Vue Un, G(x,u)nK^0} .

In a similar way that in the proof of Theorem 4.4, we can prove the
following.

PROPOSITION 5 .1 : Let K and G as previously. The decreasing séquence of
closed sets K'n defined by (15) converges to Di$>cG{K) i.e.

P i K^ = m^a (K). cis)
neM

Proof : From définitions of Kn (see (15)) and of K'n, it is obvious that for
any n e N, K'n contains Kn.

So we have just to prove that K'^ := ^"^ K'n is a discrete discriminating
nsN

domain for G.
Let x belong to K^ and u e U. From (16), there exists a séquence

unk of Unt which converges to u. From (17), there exists some yk which
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belongs to the intersection of G(x, u„k) and K'Hk. Since G is upper semi-
continuous with compact values, a subsequence, again denoted yk converges
to some y of G(x, w). Moreover, y belongs to Km because yk belongs to
K'nk. So we proved that for any x of K'm, for any u of U, the intersection
between G(x, u) and K^ is not empty. In other words, K'^ is a discrete
discriminating domain of K for G. Since K'œ contains the discrete discriminat-
ing kernel of K for G, from the définition of the discrete discriminating
kernel, both sets have to be equal.

Q.E.D.

5.2. Approximation by discrete discriminating kernels

We introducé the new notations (where B is the unit closed bail) :

MlT
Fr(x,M):=F(x,M) + — £ ( 1 9 )

GT(x, u) Ï=X + TFT(X, U) ,

The discrete dynamieal, System for the set-valued map GT is a discretization
of the dynamieal System (1) for ƒ. It is rather natural to ask if the
discriminating kernel of a closed set K for ƒ can be approximated by the
discrete discriminating kernel of K for GT. The answer is positive ;

THEOREM 5.2 : Let f as previously and K be a closed subset of
W1. Then (12) :

lim DÎscG(iO = Disc f(K). (20)

The proof is the resuit of the two following Propositions : First Prop-
osition 5.3 states that any upper limit of discrete discriminating domains for
GT is a discriminating domain for ƒ when T -• 0+ .

(12) The lower limit (in the Kuratowski sense) of a set-valued map r~»i4T when
r -> 0+ is the set of points x for which there is xT e A T which converge to x when
T - » 0 + . The upper limit of AT is the set of points x for which there are séquences
rn -*• 0+ and xn€ Ar such that xn -• x. If one has :

lim sup AT = lim inf AT

we say that AT has a limit whenr -> Ö+, and we dénote it by lim Ar, See for instance [2].
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PROPOSITION 5.3 : Let f as in Theorem 5.2. Suppose that for any
r > 0, the closed set KT is a discrete discriminating domain for GT. Then
K* := lim sup KT is a discriminating domain for f

Second Proposition 5.4 yields that Dïscf(K) is contained in the discrete
discriminating kernel of K for Gr.

PROPOSITION 5.4 : Under the previous assumptions,

Dïscf(K) c DrscG(/O , Vr > 0 .

Proof of Theorem 5.2 : Set

£>#:=limsup DÏscG (K).

Since DiscG (K) are discrete discriminating domains, from Proposition 5.3,
D* is a discriminating domain for ƒ contained in K. So D* is contained in
Discf(K).

Conversely, Proposition 5.4 states that lim inf DÏscG (K) contains

Disc7(^). Hence

lim sup DïscG(K) c Discr(^) c lim inf DiscG(^) .

Since the upper limit always contains the lower limit, Theorem 5.2 is proved.

Proof of Proposition 5.3 ; Let us consider xö e K* and u e U. There exists
a subsequence XT0 G KT which converges to JC0. For any r, there exists
(*ï)#ieN solutions of:

XT =

which remain in KT, because KT is a discrete discriminating domain
for GT.

From the définition of Gr, xn
r
+l belongs to GT(xn

T) and then :

x
n + l ~ xn

V n > 0 , — - e F r ( * ; , K ) .
T

With this séquence we associate the piecewise linear interpolation xT ( . )
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which coincides to xn
T at nodes nr :

xn + 1 - xn

xT(t) = xn
r + — (t-nr), Vf e [nr, (n + l ) r ) , V « > 0 .

T

Then

We have

J((JCT(O, x;(r)), Graph ( F T ( . , M ) ) ) « | | x T ( 0 - 4 | | ^r | | F « , u)|| .

Since F ( . , M) is bounded by M (See (5))

V r , V s ^ f , d{(xT{t),x'T{t) ), Graph (F

and with (19) we have

Graph ( F T ( . , M)) C Graph (F ( . , M))

Then, for ail t =* 0, for all r > 0,

(JCT(O, *;(O)eGraph ( F ( . , M)) + MT

By the Ascoli and Alaoglu Theorems, we dérive that there exists
x ( . ) G Wls ^0 , + ex) ; X ; e~ct dt) and a subsequence (again denoted by)
xT which satisfy :

i) xr ( . ) converges uniformly to x ( . ) ,

ii) x'T(. ) converges weakly to x' (. ) in L1 (0, + oo ; X ; e"c/ dt). (22)

This implies ([3] The Convergence Theorem) that x(. ) is a solution to the
differential inclusion :

x'{t) e F (x(r), M) , for almost ail t s* 0 ,
x(0) = x 0 e* :* .

It remains to prove that the limit is a solution which remains in

K*, For any t > 0, there exists a séquence w, = £ ( - j such that

nt r -^ t when r -• 0. Then x{t) = lim xT(nt r). Since Vr : jcT(n, T) =
r - 0

JC"' e ^ r ï x(r) belongs to the upper limit K* of the subsets ^T. So we have
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proved that for any t 5= 0, x(t ) belongs to #*, SO that K* is a discriminating
domain for ƒ.

Proof of Proposition 5.4 ; Let x0 e Discf(K) and u e U fixed. Consider
any solution x ( . ) of the differential inclusion for F (,, u) starting from
x0. Let T > 0 given. We have

x(t + r ) - x ( f ) = Jt'Cs)<fe, W > 0 .

Since x'Cs) e F (x(.s), w) and F Lipschitzian,

jc(r + T)- jc( r )e rF(x(0)

But F is bounded, and ||x(^) - x ( O | | *z (s - t)M. Thus

x(t + r ) - JC(O G rF (jc(f ), u) + ^ r 2 B . (23)

So, we have proved that if x0 belongs to the discriminating kernel of
K for ƒ and if x ( . ) is a solution for F ( . , u) starting from JC0, then the
following séquence

€n = x{nr), Vrc^O (24)

is a solution to the discrete dynamical system associated with GT{ . , M) :

f„ + i e G r ( f „ , « ) , V ^ O . (25)

Assume now that x (. ) is solution of the differential inclusion for
F ( . , M) starting from x0 and which remains in Disc f (K). Such a solution
exists from the very définition of D[scf(K). Then (f „)„ is a solution to (25)
which remains in T>iscf(K). Since for any x0 of DisCf(^) and any
u of U, one can find a solution (f n)n of (25) with f0 = x0, which remains in
DisCf(A'), this means that Discf(K) is a discrete discriminating domain for
Gr. Thus

Discy(/O cr DÏSCCT(/O , Vr > 0 .

Q.E.D.

6. APPROXIMATION BY FINITE SETVALUE0 MAPS

With any h R w e associate Xh a countable subset of X, which spans
X in the sensé that

Vx e X , 3xh e Xh such that ||x - xh \\ *z a (h) (26)
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where a (h) decreases to 0 when h -+ 0 :

lim a (h) = 0 . (27)

Consider a f-Lipschitzian map ƒ : Un x U xV -• IR". For any fixed
r > 0 :

[FT(JC, M) = F ( J C , M) ^
2 (28)

GT(x, w) = x + rFT(x, W).

Set moreover :

\Gr
T{x,u) = GT{x,u) + rB

[Gr
Tfh(x, u) =Gr

r(x, u)HXh.

The set-valued map G'T h is the discretization of the extend set-valued map
Gr

r, If K is a closed subset of R", we set

* £ = (^ + r 5 ) n X , .

We are now able to state the last Theorem of this paper :

THEOREM 6.1 : Assume thatf : Un x U x V -+ Un is a i-Lipschitzian map
and K is a closed subset ofM". We assume thatfis bounded by some constant
M (i.e. f satisfies (5)) and that ƒ ( . , M, V ) has convex values. Then we can
approximate the discriminating kernel of K for ƒ by the finite discrete
discriminating kernel of'K^h)for the discrete set-valued maps G^2£ TÎ)a^ in

the following way :

lim sup Di$cG(2 + r!)a(h)(K%(h)) = Discf(K) . (30)
r->0 T'ft

Remark : Is S is a closed set such that Xh n 5 consists in a finite number of
points and H : S x U~> Un is a set-valued map with closed values, then
Disc^(5) can be computed in a finite number of steps thanks to the algorithm
described in Proposition 5.1.

We first prove the following Lemma :

LEMMA 6.2 : Let f and K as in Theorem 6.1. Then we have :

[DÏSCG T (A') + a (h)B] nxhcz DÏscG(2 + Tf)„(*) (/sT£(/l)) . (31)
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Proof of Lemma (6.2) ; We have just to prove that D :=
[DiscGT(K)+ a(h)B]nXh is a discriminating domain for G<?îT')flr(fc)

contained in K^h\ Since DiscG (K) is contained in K, the set D is clearly
contained in K%ih\

Let xh belong to D and u e U be fixed. From the very définition of
D, there exists some x of DiscG (K) such that ||x — jc/t|| ^ a(h). Since
DiscG (^) is a discrete discriminating domain, there exists y in the
intersection between GT(x, u) and DiscG (AT). From (26), one can find some
yh in Xh such that ||y - yh\\ ^ a (h). In particular, yh belongs to D.

Since ƒ is a £-Lipschitzian map, GT is (1 + ri )-Lipschitzian set-valued
map. So we have :

yhe [GT(x, u)+a(h)B] nXh^

[GT{xh,u)+ (2 + r f ) \\x-xh\\B] nXh.

Since ||JC - xk\\ ^ et (h\ we have finally :

yhe [GT(x„w)+ (2 + A) a (h)B] n Xh .

This means that for any x of D, for any u of f/, the intersection between
G f̂t r f ) a ( / l ) and Z) is not empty, i.e., D is a discriminating domain for
G (2 + T<>)«(/0 S o Lemma 6.2 is proved.

Proof of Theorem 6.1 : First, point out that if a séquence of closed set
A{T) converges, for the Kuratowski upper limit, to some closed set
A when r -• 0+ , then :

limsup A(r)%(h) = A .

Indeed, consider x^1 of A(rn)l
{hn> which converges to some x. There exists

yT"n of A(rn) with \\xT
n
n - yln\\ ^ a (hn). Since a. (hn) converges to 0+ , we

have proved that yT
n

n converges to x and x belongs to A. The opposite

inclusion is obvious.
So, Lemma 6.2 and Theorem 5.2 yield :

Discf(K) = lim sup DiscG (K) a lim sup DiscG(2 + rf)«(/o (K%ih)).

... Mlr2

a (h) ss — —

We have to show the converse. Fix h >- 0. The set DÏSCG<2 + T*V(/O (K^h)) is
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contained in DiscG(2 + )̂«(*) (K + a(h)B) for any h lower than &, because

DiscG{2 + rf)*(fe) (K%(h)) is a discriminating domain contained in K + a (h)B,

The upper limit of DiscGa+ *•*)<»<*) (K%{h)) is contained in the upper limit of

2 + Tf)«(/o (K + a (h)B\ when /z and r go to 0+ . Recall that

Since a (/*) is supposed to be lower than r2, Theorem 5.2 yields that the
upper limit of DiscG<2 + Tf)«(*) (K + a(h)B) is equal to Disc^^f-h a(/z)Z?).

Let us notice that Disc ƒ (K + a(h)B) contains Disc ƒ (K) because Disc ƒ (K) is

a discriminating domain contained in K + a(h)B. The Stability Theorem
(see [3]) states that any upper limit of viability domains is still a viability
domain. When h -• 0+ , the upper limit of Discf (K-\-a (h)B) is still a
viability domain for ƒ ( . , w, V ) for all u e U, so it is a discriminating
domain for ƒ contained in T̂. In particular since this upper limit contains
Disc f (K), it is equal to Disc ƒ (K). So we have proved the opposite inclusion.

7. EXAMPLE

We provide two exarnples of computation of the discriminating kernel.
This game derived from the classical homicidal chauffeur game is suggested
by Pierre Bernhard (13).

We give two situations corresponding to different values of the parameters.
The closed set K is the complement of an open target ft. In the first case, the
discriminating kernel intersects the boundary of the target O. In the second
case, it does not intersect the boundary of O,

Dynamics of the game are described by the following system :

where £/*=[- 1, 1 ] and V is the closed unit bail of IR2,

wf (jt, v) = max (o, min lw, r - 10 - 10 In ( l + 2 ^ s m ° * \ + In r\\

and (x, y) = (r cos 0, r sin 0 ) .

We set W := 5.2.

(13) It is our pleasure to thank him for discussions and advices.
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The target is defined by

ft = {(x,y), r < 1 . 5 } .

For R = 4, we obtain figure 1 and for R = 2, we obtain figure 2.

-to.o
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