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ON THE COUPLING OF ELLIPTIC AND HYPERBOLIC
NONLINEAR DIFFERENTIAL EQUATIONS (*)

by G. AGUILAR C) and F. LISBONA (2)

Communicated by M. CROUZEIX

Abstract. — In this paper we consider a boundary value problem for a second order
nonlinear differential équation which dégénérâtes into a nonlinear first order one in a given
subdomain. To find out the coupling conditions at the interface, we transform the elliptic-
hyperbolic problem into an elliptic-elliptic one by adding a small artificial viscosity. As this
viscosity vanishes, the regularized problem dégénérâtes into the original one yielding some
conditions at the interface. When the flux function is not monotone, we obtain a unique solution
for the problem satisfying a gêneralized entropy condition.

Résumé. — Dans cet article nous considérons un problème aux limites non linéaire du second
ordre qui dégénère, dans une partie fixée du domaine, en un problème du premier ordre. Nous
utilisons Vintroduction d'une faible viscosité artificielle pour transformer ce problème mixte
elliptique-hyperbolique en un problème totalement elliptique. Cela nous permet d'obtenir les
conditions d'interfaces pour le problème originel par passage à la limite lorsque la viscosité
additionnelle tend vers zéro. On montre alors que le problème admet une solution et une seule
vérifiant une condition d'entropie généralisée.

1. INTRODUCTION

This paper deals with the coupling of a nonlinear elliptic équation with a
nonlinear hyperbolic one in a one-dimensional domain. This type of problem
arises from several simplified physical models, like the infiltration process in
a heterogeneous soil formed by two layers, such that in the second layer we
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400 G. AGUILAR, F. LISBONA

can neglect the effects of diffusivity, or fluid-dynamical problems for
viscous, compressible flows in the présence of a body so that near this body
the viscosity effects have to be accounted for and at a distance from it these
effects can be neglected. The problem in hand reads as follows.

Find a pair of functions w, V defined in [a, /?] and [f3, y] such that :

-fa(u)u'y+K(uy+b(x,u) = gf in ( a , / ? ) , (Lia)

= g9 in 05, y ) , (l.lô)

a ) = 0, (l.lc)

(y)) - K(c)] ^ 0 , (lAd)

for ail c between w(y) and 0,
where :

i) a, /?, y are real numbers : a < ] 8 < y .
ii) JA, K, b are functions such that :

ft G C2([a, y] x / ? ) , &w(x, w ) > v > 0 .

iii) g eC(ay y).
Problem (1.1) may be regarded as a time discretization of an évolution

advection-diffusion problem, parabolic in (a, {$) and hyperbolic in
(fi, y X by an implicit method. This is the reason why we choose to impose a
generalized Dirichlet condition at y. If K' > 0, this condition is always
satisfied and if K' (w(y)) < 0, it gives w(y) = 0.

Clearly, the formulation of the problem (1.1) is incomplete : it needs some
coupling conditions at the interface p. In this work, our main concern is to
find these conditions and to define what we mean by a solution of the elliptic-
hyperbolic problem. This kind of problem has been considered until now in
the linear case, first the case of the one-dimensional problem [3] and more
recently the two-dimensional case [4]. These authors are interested in
obtaining appropriate interface conditions which allow them to split the
problem and use some domain décomposition methods. These methods are
appropriate for fluid-dynamical problems, because they allow us to partition
the domain into subdomains of simpler shape and, thanks to parallel
Computing, reduce the original problem to a séquence of subproblems which
can be solved simultaneously.

As Gastaldi and Quarteroni have done in [3] for linear problems, we add a
small artificial viscosity which transforms our elliptic-hyperbolic problem
(1.1) into an elliptic-elliptic one. For the coupling between two elliptic
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ON THE COUPLING OF ELLIPTIC AMD HYPERBOLIC EQUATIONS 401

problems, we require the continuity of the unknown and of the flux. As the
small viscosity vanishes, the coupled elliptic-elliptic problem dégénérâtes
into the original one, yielding some conditions at the interface. These
conditions we take as interface conditions for the elliptic-hyperbolic
problem.

In section 2, we deal with the case of elliptic-hyperbolic nonlinear
coupling with strictly monotone flux function K(u)* In this case, we obtain
coupling conditions analogous to the linear case with a strictly positive or
strictly négative advection function.

Section 3 is devoted to the study of a more difficult case, when the flux
function is not a monotone function. In this situation, there are two
difficulties in defining a solution of the elliptic-hyperbolic problem. First, as
we said, we need some coupling conditions at the interface, and moreover
there is a problem with the uniqueness of the solution in the hyperbolic
domain. An extension of the entropy solution (see [2]), which solves the
uniqueness problem for nonlinear conservation laws, allows us also in this
case to characterize the coupling conditions,

From now on, we dénote by C any positive constant independent of the
parameter e.

2. ELLIPTIC-HYPERBOLÏC PROBLEMS WÏTH MONOTONE FLUX FUNCTION

In this section, we deal with a situation in which discontinuities could not
appear in the hyperbolic domain ; this is the case in problems with monotone
flux function. The characteristic lines of the évolution hyperbolic problem
enter the domain across {/?} x (0, T) if K' s* 0 and across {y} x (0, T) if
Kf *== 0. Taking this into account, we can expect different coupling conditions
at the interface depending on the monotonicity of K, and for this reason we
distinguish two cases.

2.1. First case : K is strictly increasing

As we said in the introduction, in order to find the coupling conditions and
to prove the existence of a solution to the elliptic-hyperbolic problem, we
add a small artificial viscosity which transforms our problem into an elliptic-
elliptic one. For the coupling of two elliptic problems, we impose as
interface conditions the continuity of the unknown and of the flux, So the
regularized problem is :

Given e > 0, find u€ and ve such that :

—
-
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o,
(/8 ) = ev :o8).

(2.1d)

(2.1g)

The Neumann condition at y may be replaced by one of Dirichlet type and
analogous results could be proved. Problem (2.1) admits the following
equivalent weak formulation.

Find WEEL H{a, y) such that :

fyA£(jc)/,(^(x)X(x)77'+ PK(we)'V+ f* b(x, w£(x))V =
J a J a J a

gV , VVeH(a,y), (2.2)
J a

where

ƒƒ(« , y) = {weH\a, y):w(a) = 0} ,

and

A , *_ f l , xe ( a , p),

Note that w e solves problem (2.2) if and only if ue = we\[al3] and
uÊ = w e | ̂  yJ solve problem (2.1).

Using an existence resuit for solution of generalized boundary value
problems obtained in [7], p . 222 by weak comparison functions and using
also an inverse monotonicity argument for the functional B (H>, 77 ) =
Çy Çy Çy Çr

ÀE(x) yu-(w) w' v' + K(w)f 17 + b(x, w) v - g??, the follow-
J a J a J a J a

ing resuit is proved in [1],

PROPOSITION 2.1 : Problem (2.2) has a unique solution, w£. Furthermore,

\wc 0, where c0 = max { I \b(x, 0) - g(jc)| } . (2.3)

Some bounds are obtained now. These allow us to take the limit as
s goes to zero in (2.2) and to prove the existence of a solution to the elliptic-
hyperbolic problem (1.1).

From now on, we make the following assumption

geCl(R). (2.4)

LEMMA 2.2 : There is a constant C > 0 such that

KIU..T)*C. (2.5)
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Proof : We use the same technique as Lorenz in [5] to obtain a similar
resuit for the solutions of nonlinear singularly perturbed problems. Differen-
tiate the équations (2.1a) and (2.1&), multiply the results by sg(<f>(w£)

f\

where <f> (s) = ti(t)dt, and integrate between a and /3 and between
Jo

(3 and y to obtain :

ÇP
<t>(we

J a

and

- V

+ s <f>(w£)'" sg(<f>(w£)')

with

c1 = max {\bx(x9 u)-g'(x)\ : (x, M) G [a, y] x [-c0 , c0]} .

Let pô(. ) be a regularization of the sign function, that is :

PôsCl(R), pô(z) = sg(z) for \z\ ^ ô and |z| = 0 ,

Using ps and applying Lebesgue's dominated convergence theorem for
5 -• 0, we have :

f
J a

and

j ^ wc sg we ^ w£

and, by Sacks' lemma :

f"
K(we)" sg(</> (w.)') * K(wsy sg(4>(we)')

Ja

vol. 28, n° 4, 1994



404 G. AGUILAR, F. LISBONA

and

1
J

y

K(we)" sg(<t>(wey)^K(w£y sg(<f>{w£y)\} .

Finally, because of the coupling conditions at /?, we obtain,

« ) + [g(a)-b(a,we(a))]sg(<t>(wey («
- l9(y)-b(y, w£(y))]sg(<t>(wey (y) ) .

LEMMA 2.3 : TAere w a constant C > 0

KILw>*c- (2-6)

Proof : Taking the function 77 = <f> (w£) in (2.2), the bounds (2.6) and (2.7)
follow from (2.3), (2.5) and <f>' 5= /*0.

Take the L2(/3, y) scalar product of (2.1b) and <£(i>£)' and, because of
(2.5), the inequality

is obtained. Thus,

JB JB VO J
K{vEy <t>{vEy^c .

B

Now we can prove the main resuit which gives existence and uniqueness
of a solution to the original problem (1.1).

THEOREM 2.4 : uE and v£ converge as s -> 0 to a pair offunctions u and v
which satisfy (1.1a), (l.lfc), (1.1c) and the interface conditions,

(2.9)

u'(fi) = 0. (2.10)

Proof : As a conséquence of the previous bounds, we can show the
existence of u e H1 (a, /3 X v e L2(/3, y) and x ^ Hl{8, y) such that,

i) u€ —• u in L2(a, /3 ) and everywhere,
ii) u'£^y u' weakly in L 2 (a , p ),
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iii) v£-+v weakly in L2(f3, y),
iv) K(ve)-*x weakly in Hl({3, y) and everywhere.
The continuity and the strict monotonicity of K imply that
v) v=K-l(x)ïn (fi, y ) ,
vi) ve -> v everywhere in (/?, y).
The boundary condition (1.1c) and the interface condition (2.9) follow

from i) and vi).
Integrating by parts and taking the limit in the obtained expression, we

have

f / * ( « ) « ' V'- \\(u)v' - \y K(v)ri' +K{v){y)V{y) +
Ja Ja Jp

+ b{x,u)<n+\ b(x,v)v=\ gV , \tveC$(a, y ) . (2.11)
Ja Jp Ja

f
We have used that lim £/ut,(w£)w

f
e 17' = 0, from (2.7).

From (2.11), équations (1.1a) (1.1b) follow easily. In order to get the
interface condition (2.10) at yö, we take a function r) s C^(a, y) such that
7j(/3) = 1 in (2.11) and integrate by parts ; then

re cv Cr re
- ( M ( M ) M ' ) ' Ï 7 + K(uyv+\ K(vyri+\ b(x, u) v +

Ja Ja J/3 Ja

+ \b(x,v)v + p(u(P))u'(P)= V gV ,
Jp Ja

and, by (1.1a) and (1.1b), the interface condition (2.10) follows.
In order to prove the uniqueness, let us suppose that there are two solutions

(M, V) and (M, V).

Multiplying the differential équation (1.1a) by p% (<j> (u) - <j> (M)), where
/?J is a regularization of the Heaviside function, that is to say, a function
which satisfies,
p% eC](R), p J ( / ) = sg + ( / )

if t^ô and r ^ O , O ^ p J ' ( r ) ^ ^ - . (2.12)
o

Integrating the différence by parts, we have :
[K(u(fi )) - K(ü(fi ) ) ] pt (<t> (u(fi ))-<f> (û(fi ))) -

[K(u) - K(ü)] pî (<f> (u) - <f> (5) ) ' +- T
J a

[b(x, u) - b(x, «)] p j (^ («) - 4> («)) « 0 ,

vol. 28, n° 4, 1994



406 G. AGUILAR, F. LISBONA

and taking the limit as 8 -• 0+ it results :

f
J a

[b(x, u) - b(x, 5)] sg+ (4> («) - 4> («)) « 0 ,

and by the monotonicity of b and <f>,

J:
Then u ^ u. In the same way, we can prove the other inequality. Thus
u — w.

Now u and ü satisfy the differential équation (l.lb) and the same initial
condition. Multiplying the differential équations which satisfy v and
v by PÔ (K(v)- K(v)X integrating the différence by parts and taking the
limit as 8 -> 0 we obtain,

17 [&(JC, i?)-&(x, tJ)]+

We would like to remark that the coupling conditions we have found allow
us to split the problem and use different numerical methods to integrate each
subproblem.

We present some numerical results obtained for the problem

^ | (1 + J C Z ) W = 1 , xe ( - I, 0 ) ,

w(~ 1) = - 1 , w ( l ) = 1 .

These results support the theoretical results obtained. Problem (2.13) is
solved in two ways. In one approach, we deal with the elliptic regularization
of problem (2.13) with s = 10" 6. This regularized problem is solved by the
Engquist-Osher différence scheme on the following mesh, which always
contains the point x = {3 ;

h = {xj:xo= a ,xN = j3,xM= y , Xj + l = Xj + hj, 0 ^j ^ M - 1} ,

where

h= (Ao, hu ..., hN, ...,hM_JeRM,

with Y, K: = P - <* and £ ^: = y - /3. Let Ày = -^—L î .
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The scheme used is the following,

w0 = - 1

i r wi - 1 — wi w,•• +1 — wi i i
-r- ^ir i + -1±ï.—~ +-r(K(Wj)-K(wj_l)) + b(xJ,Wj)

h , L «y - 1 hi J h,

407

1 =sy «W - 1 ,

swN + ! -
^ + K(wN)

hN J

L i hi-i + hJ \ + L WJ

N

with K(w) = — + w. The équation at = yS is a discretization of the

continuity of the flux across this point.
The second approach consists in integrating the elliptic problem in

(a, p ) with the condition u' (13 ) = 0 in a first step and afterwards solving the
hyperbolic problem with v (/3 ) = u(/3) using a one-step backward method.
Results shown in figure 1 are obtained on a uniform mesh with step-size
h — 1/40, using both approaches. The différences bet ween them are about
io- 5

-0.5 -

vol. 28, n° 4, 1994



408 G. AGUILAR, F. LISBONA

2.2. Second case : K is strictly decreasing
In this case the regularized problem is :
Given s => 0, find ue, vc such that

- ( ^ (ue)u'ey + K (ue)'+ b(x, us) = g , in ( a , / ? ) , (2.14a)

-e(»(ve)v'cy+K(vey+b(x,ve) = g, in ( 0 , y ) , (2.146)

u,(a) = 0, (2.14c)

(2.14e)

Problem (2.14) is equivalent to the following weak problem :
Find we G Hl(a, y) such that

^ , V77 e H l
0 ( a , y ) . (2.15)

In the same way as for the problem (2.2), one shows that (2.15) has a
unique solution w£ and that the bound (2.3) holds. The asymptotic analysis is
analogous. Moreover, we still assume (2.4).

LEMMA 2.5 : The re is a constant C > 0 such that

In the following lemma, we have a bound on the L2-norm of K(v£ )' in a left
neighbourhood of the right boundary y. It allows us to keep the boundary
condition at y when we take the limit.

LEMMA 2.6 : The set {K(ve)'\ s > 0} is bounded in L2(S, y), for any

8 with fi < 5 -< y.

Proof: Let us introducé a function TyeC^djS, y]) such that r? (/3) = 0,
V(y)= 1 and i?' 5=0. Taking the L2(f3, y) scalar product of (2.146) by
7}<f>(vey, and integrating by parts in the first term, we obtain

(2.19)
J/5 J/? Jfl
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From the bounds (2.16), (2.18) and the expression (2.19), we get,

J' \K{vJ4>(vey 7?

Then,

Y [K(veyfv ^C \ \K'(v£)\ [v'£]
2
 v *z

r Cy

— \K(v£y <f>(v£y v\ ^c .
^ 0 J 8

[

THEOREM 2.7 : There are unique us H1 (a, p\ v e C ([p, y]) which
satisfy (l.lö) (1.1&), (1.1c), (l.ld) and the interface condition,

- fjL (u(p )) u\p ) + K(u(p )) = K{v(p ) ) . (2.20)

Proof : As a conséquence of the previous lemma, we can find
u e Hl(a, ]S),«6 L2{p, y) and x e T/1^, 7) such that

i) w£ -• w in L2(a, (3 ) and everywhere,
ii) *4 -+ u' weakly in L2(a, p ),
iii) v£ -> v weakly in L2(/3> y),
iv) K(ve)-+ x in L2(5, y) and everywhere.

Because of the continuity and the strict monotonicity of K,
v) v =K-l(x)eC([{3, y]\

vi) vF^v everywhere in (8, y).

The boundary conditions u(a) = f (y) = 0 follow from i) and vi). The
estimate (2.16) implies that v e BV {p, y), which allows to define continu-
ously v (p ) by its right limit.

Integrating by parts in (2.15) and taking the limit in the expression
obtained, we have

K(u)v'- \
J a J oc

+ b(x9 u) rj + b{x, v) 7) = gv ,
Ja Jö Ja

VT; G C ? ( a , y ) , (2.21)

due to the fact lim fyu. (w£) w'g r) ' = 0.

Equations (1.1a) and (1.1^) hold because of (2.21).
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Taking a function r? e C 0 * ( a , y ) in (2.21), such that v(P)= 1 and
integrat ing by parts , we obtain

Çfi Çfi
(M (M) « ' ) ' V + K(M)' V +

K(v)' v + 6(JC, w ) î y + 6(x, u)77 +
3 J a Jô

+

= £gv ,

and, by (1.1a) and (1.16), the interface condition follows.
In order to prove the uniqueness, let us suppose that there are two solutions

(M, V) and (î/, v).
Multiplying the differential équation (1.16) satisfied by v and v by

Ps (K(v) - K(v)), where p§ is the regularization of the Heaviside function
defined in (2.12), and integrating the différence, we get :

I [K(v)f - K(vy]p+
S (K(v) - K(v))

J
Mx, v)-b(x, v)]p+

ô(K(v)-K(v)) = 0. (2.22)

Integrating by parts in (2.22) and taking the limit when ô -• 0+ , it follows
that

+ (K(v)-K(v)) = 0.

Because of the strictly decreasing monotonicity of K and the increasing
monotonicity of 6 we have that v === v. In the same way we can prove the
other inequality, and therefore v = v.

Multiplying now the differential équations, which are satisfied by
u and ü, by pg (<fi (u) — <f> (w)) and integrating by parts the différence, and
then taking the limit as ô -• 0+ , we obtain

[K(v((3))-K(v({3))]sg+(<f>(uU3))-<f>(ü({3))) +

0 , (2.23)r
where we have taken into account the interface condition. The inequality
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u ^ ïï follows easily from (2.22) because we have proved that v = v, and
<f>, b are increasing monotone functions.

In this case, it is also possible to split the problem. First, one can integrate
the hyperbolic problem :

Find a function v defined in [/3, y ] such that
, v) = g , in (0 , y ) ,

and then, knowing v (/? ), one can integrate the elliptic problem :

Find a function v defined in [a, fi ] such that
+ b{x,u) = g, in ( a , j S ) ,

- M (M(/3 )) tt'(/8 ) + ^ ( M ( ) 8 )) = K(v((3 )) .

In figure 2, we present some numerical results obtained for the problem

( 0 , 1 ) ,

1

0.5

-0.5

-1

-1 -0.5 0 0.5

Figure 2.

The solid line shows the results obtained for the decoupled problem and
the dashed line shows the results obtained for the regularized problem with
e = 10" 6 using the Engquist-Osher scheme.
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3. ELLIPTIC-HYPERBOLÏC PROBLEMS WITH ARBITRARY FLUX FUNCTION

In this section, we deal with more gênerai problems which correspond to
gênerai flux functions. Again the same regularization technique gives us a
solution for the elliptic-hyperbolic problem. Then we consider the problem :

Given e :> 0, find u£ and v£ such that :

- ( M ( M . ) M ; ) ' + A - ( I I J ' + &(JC, K«) = 0 , in (a, £ ) , (3.1a)

- eifji (v£) v'£y + K(v£y + b(x, v8) = g, in (/3, y) , (3.1&)

M«(a) = 0 t (3.1c)
0 , (3.W)

The equivalent weak problem is :
Find w £ e / / J ( a , y) such that :

17 A.(x)At(w,(x))w;(jc)iî'

| r è ( x , W , ( J C ) ) I I = | Y S77 , Vv eHl
0(a, y). (3.2)

As in the previous cases, we obtain again existence and uniqueness of a
solution for the regularizcd problem given in proposition (2=1).

Now let us discuss the asymptotic behaviour of w£ as e goes to zero. We
also make the assumption

and in the same way as in the previous cases we obtain the following results.

LEMMA 3.2 : There is a constant C such that

ü> I K i L w ) ^ c ' (3-4)

iii) V^| |w; | |L2 t f i y )*C. (3.5)

We introducé the space

NBV(a, y)= {ueBV(a, y):u(x) =

= M(x+)Vxe (a , r ) , tt(y) = «(y - )} ,

where ^V (a , y ) dénotes the functions of bounded variation on [a, y ]. Now
we are in a position to characterize the limit of w£ as f goes to zero.
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THEOREM 3.3 : There is a séquence {w
£} £^0 which converges a.e. ta a

function w e NBV (a, y) such that w | (a p} e Hl (a, fi ), w {a ) = G end for
ail ceR and <p eC™(R\

— jj, (w) w' sg(w — c) <p' +
J a

+ f7 sg(w~c){[K(w)-K(c)] <p' - [b(x, w) - g(x)] <p}

Ja (3.6)

& sg(- c) <p(a)[p(w(a))w' (a) - K(w(a)) + K(c)]

- sg(~ c) <p ( r ) [ - K(w(y)) + K(c)] .

Proof : The set {w£} £ ̂  Q is bounded in W{' l(a, y). Therefore, there exists

a function w e NBV (a, y) such that (upon extracting a subfamily),

we-*w in L[{/3, y) .

On the other hand, from (3.4) and (2.3), we have

w,. -> H' in L2(a, /3) ,

w'£ -> wr weakly in L2(a, /3 ) .

Multiplying équations (3.1a) and (3.1^) by p5(vwe - c) <p, where ps was
defined in (2.12), then integrating by parts in (a, y) and finally going to the
limit as Ô -• 0, we obtain

<f>(w£y(a)sg(-c) (p{ot)- e<j>{w£)
f{y)sg{- c) <p{y) +

e - c) <P' + [iC(wB(y)) - *T(c)] 5fif(- c)

- [K(wE(a)) - K(c)] sg(- c) <p (a) - H [K(w£) - K(c)] sg (w£ - c) <p '
J a

+ b(x, ws)sg(ws -c)v - g sg{we- c) <p « O . (3.7)
Ja Ja

The result follows by letting e go to zero in this inequality.

THEOREM 3.4: There is only one function w e NBV (a, y) satisfying
(a) = 0, w\ia £) G H1 (a, p\ and condition (3.6).
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Proof : i) The inequality (3.6) is also valid for functions < p r ô and
<Ppt ô , where

0 , if x =s y - ô ,

+ X ~y , if y - S === x =s y ,

- , if

0 , if x ^ y + S .

Subst i tut ing these functions in (3.7) and taking the limit as £ - • ( ) , we get

sg(w(y))[K(w(y)) - K(c)] ^ 0 , (3.8)

for ail c between w(y) and 0,

(p + ))-K(c)] 2*0,

Vc between w(f3~) and w(fi + ) . (3.9b)

ii) Let us assume that there exist two functions w and w in NBV (a, y )
such that w(a) = w(a) = 0, w\ [a ^ G H1 (a, fi ), w| [a> ̂  e/^(or, £ ) and
both satisfy (3.6). Then,

sg(w(y) - w(y))[K(w(y)) - K(w(y))] =

- c)[K(w(y)) ~~ K(c)] (3.10)

iii) w and H> satisfy,

+ [b(x,w)-b(x,w)]sg(w-w)^0. (3.11)
J a

iv) w and w satisfy,

- sg(.w(y) - w(y))[K(w(y)) - K(w(y))]

<c,w)-b(x,w)]. (3.12)
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v) From the inequalities i), ii), iii) and iv), we obtain

))]. (3.13)

The uniqueness follows from (3.13) if we prove that the second term is
négative. Assume sg(w(P + ) - w(P + )) # sg(w(/3 ~ ) - w(P~ )) and take,
for example, sg(w(/3 + ) — w(p*)) = 1. We have six possible cases :

a) w { p - ) ( p ) { f ) { f )
If we consider (3.9) for w and c = w(/3 + )J we obtain

and therefore w = w.
b) w(P + )^w(p~)^ w(p-)*zw(p + ) .
If w(f3 + )<w(p-) or w(£~)-< w{fi~), we deduce from (3.9) for

w and c = w(/3~) and (3.9) for w and c = w(/3~) that

Therefore, w = w.
If w(/3~) < w(/3 + ) , then from (3.9) for w and c = w(/3~) we also get

w = vv.
In the same way, we prove that w = w for the cases :

c) w(P + )*w(p-)**w(P + )*zw(p-),
d) w(p + )^w(P + )^w(p-)^w(p-),
e)
f)
The existence and uniqueness results obtained in theorems (3.3) and (3.4)

characterize a solution of the elliptic-hyperbolic problem through a
generalized entropy condition. In the next theorem, we give another
characterization which explains why this function w is a solution of the
elliptic-hyperbolic problem and gives some coupling conditions at the
interface.

THEOREM 3.5 : The only function w e N BV {a, y) satisfying w(a ) = 0,
w| [a ^j e H1 (a, p ) and (3.6), is characterized by the following conditions :

f b(x, w) = g(x\ x e (a, p),
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ii) For ail discontinuities y e (/3, y) K{w(y~ )) = K(w(y+ )),

sg(w(y+ ) - w(y~ ))[K(w(y)) - K(c)] ^ 0

Vc between w (y+ ) and w (y~ ) .

iii) At 0, -vL(w(Pn)w'{p-) + K{w(p-)) = K(w(p + )X and
sg(w(/3-)-w(p + ))[K(w(/3 + ))-K(c)]^0 holds for all c between
w{p) and w(/3 + ).

iv) At y sg(w(y))[K(w(y)) — K(c)] ^ 0 holds for ail c between w(y)
and 0.

Proof : The proof follows with the same ideas of L6J for stationary shock
problems. The conditions at the interface have been proved in (3.9).

We present some numerical results obtained using an Engquist-Osher
scheme for the regularized problem. On a mesh defined in (a, y) this
scheme reads,

1 f <f> (Wj _ ! ) - <f> (Wj) <f> (Wj; + L ) - <f> (Wj

[ + *;

r̂  1
K'+ (s) ds + K'_ (s) ds + b(xj9 Wj) - 0 ,

J% J

hN _x hN J

K'+(s)ds+ \ KL(s)ds\ = 0 ,
wN_l JwN J

hJ

; (s) ds+ K'_ (s) ds + b(xp Wj) = O,
Jwj J

N + 1 *sj> **M- 1 .

We present the numerical results obtained for the problem

+ W = 0 , 1 6 ( - 1 , 0 ) ,
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+ w = O , x e (O, 1 ) ,

w ( - 1) = - 1.6, w ( l ) = 1.4

considenng the regulanzed problem for e = 10" 6, and on a uniform mesh
with step-size /* = 1/40.

1 5

1

05

0

-0 5

1 5

-2
-1 -0 5 0

Figure 3.
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