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ETAJttLYSEWJMÉMQUE

(Vol 28, n° 4, 1994, p. 377 à 398)

ANALYSIS OF MULTILEVEL DECOMPOSITION
ITERATIVE METHODS FOR MIXED FINITE ELEMENT METHODS (*)

by R. E. EWING (l) and J. WANG (2)

Communieated by J DOUGLAS Jr.

Abstract — We propose and analyze some itérative algonthms for mixed finite element
methods for second-order elhptic équations The method is based on some multilevel
décompositions for the finite element space and is related to the standard multigrid and
hierarchical basis multigrid methods We show that the algonthms converge wit h rate bounded
by 1 - (o (2 - (o )/(C ƒ), where J is the number of levels and 0 < <o < 2 is a relaxation
parameter No regularity assumption beyond that necessary to define the weakform is assumed
Hence the result holds for problems withjump coefficients or rough solutions We also estabhsh
a uniform convergence rate, independent of the number of levels, by additionally assuming full
regularity for the second-order elhptic équations

1. INTRODUCTION

We are concernée! with solution methods for mixed finite element methods
for second-order elliptic équations. It is known that the use of mixed finite
element methods can provide very accurate approximations for the flux
variable, which is a physically interesting quantity in many applications. The
theory of the mixed method has been well established by many researchers
(cf. [1, 7, 10, 14, 15, 20]). However, the technique of the mixed method
leads to saddle point problems whose numerical solution have been quite
difficult.

Recently, great attention has been focused on the domain décomposition
method for the mixed method (cf [16, 19, 11]). Both the theory and the
numerical experiments show substantial achievement in solving the mixed
finite element discretization problem.
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378 R. E EWING, J. WANG

In this paper, we propose and analyse some itérative algorithms based on
certain multilevel décompositions for the finite element space. The method
can be regarded as a multilevel extension of the two-level Schwarz algorithm
{cf. [19, 11]). Also, the method can be considered as a multigrid method as
indicated in [23] for the standard Galerkin finite element method.

For simplicity, we take as our model the homogeneous Neumann
boundary value problem

- V . (a(jc)Vp)=/, in /2, ( 1 x)

a(x)Vp . v = 0 , on 9/2 ,

where /2 is a polygonal domain in M2 and v dénotes the unit outward normal
vector to the boundary 3/2. Hère V and V . dénote the gradient and the
divergence operators, respectively.

Let c(x) = a(x)~l and ( -, . ) dénote the inner product in L2(/2) or
L2(/2)2. Set

TT = / / 0(div; /2)

= {v G L2(/2 )2 ; V . v e L2(/2 ) and v . v = 0 on a/2 } ,

which is a Hubert space equipped with norm :

Let W = LQ(/2 ) be the closed subspace of L2(/2 ) consisting of functions with
vanishing mean values. By introducing the flux

u = - û V p , (1.2)

the problem (1.1) is equivalent to the détermination of (u ; p) e 'V x W such
that

(eu, v ) - (V.v ,p) = 0 , VG 1T , ( 1 3 )

(V.u, w)= <ƒ, w) , weW.

The first équation in (1.3) stems from testing (1.2), divided by a{x\ against
y and the second from testing (1.1), after substitution using (1.2), against
W.

Let ¥5h be a triangulation of Ü and if h and Wh be the finite element spaces
for the flux and the pressure variables, respectively, satisfying the Babuska-
Brezzi stability condition. Then, the mixed finite element method for (1.3)
seeks (uh ; ph) G irh x Wh such that

(eu,, v ) - (V.v,pfc) 0, V G T T \

(V.u*,w)= (f,w), wsWh.

Examples of irh and Wh which are stable will be illustrated in Section 2.
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MULTILEVEL MIXED FINITE ELEMENT 379

Foliowing the idea presented in [19, 11], we shall first find a discrete flux
u* such that V • u* = V • uh via some multilevel décomposition structure.
Then we reduce the saddle point problem (1.4) to a positive definite problem
for the flux variable by the use of u*. The new problem is defined on the
divergence-free subspace of 'V h and thus has difficulty in the sélection of the
right basis functions. This difficulty, however, can be overcome by using
either the domain décomposition method or the stream-function space (see
Section 2).

Two multilevel itérative algorithms are proposed in Section 3 for the
reduced saddle point problem. To compare with the Standard multigrid
method, we apply the Schwarz alternating method and the additive Schwarz
method for each level to replace the standard Gauss-Seidel and Jacobi
smoothings. We show that, without any regularity assumptions, the two
algorithms converge with rate bounded by 1 - o> (2 - a>)/(CJ) for some
constant C, where / is the number of levels and 0 < a> < 2 is a relaxation
parameter. Furthermore, if the full H2 regularity is satisfied for the operator

V . (cV ) with homogeneous Dirichlet boundary condition, then uniform
convergence is possible.

The paper is organized as follows. In § 2, we review two known families
of mixed finite element spaces. In § 3, we propose two multilevel décomposi-
tion algorithms (MDAs) for (1.4). The convergence estimâtes are established
in § 4. Finally, we present some numerical results in § 5 to illustrate the
efficiency of our method.

2. MIXED FINITE ELEMENT SPACES

We outline two families of mixed finite element spaces in this section, one
on triangles and one on rectangles.

RT Triangular Eléments : Let x = (je, y) be the space variable. The RT
(Raviart-Thomas) space [20] of index j on the triangle K for the flux is
defined by

where P)(K) is the space of homogeneous polynomials of degree j on
K. The corresponding space for the pressure is given by

A locally-defined projection operator ITh can be given by the following
degrees of freedom :

(v • v-> P)e -> P e Pj(e) for all three edges ,

( v , 4 > ) K , < f > * P j 2

vol. 28, n° 4, 1994



380 R E EWING, J WANG

BDFM Eléments : The BDFM (Brezzi-Douglas-Fortin-Marini) spaces (cf
[8]) are modifications of the rectangular RT spaces. The space of index
j for the flux variable is defined by

and the pressure space is defined by

Wh(K) = PJ_l(K),

where P t(K) dénotes the polynomials of total degree no larger than
i on K. A similar projection operator ITh can be defined locally using the
following degrees of freedom :

<v . v, p)e, p E Pj _ 1(e) for all four edges ,

( v , 4 > ) K , $ > e P ^ 2

It is not hard to check that the operators ITh are well defined on
't" D Hl(O)2 and satisfy the following commutative property

QhV . = V .nh on «rnHl({2)2, (2.1)

where Qh is the local L2 projection operator from W onto Wh. The stability of
the finite element spaces described above sterns from (2.1) and the local
natures of ITn and Qn. For a detailed discussion, see [1. 7, 8, 9, 10, 14, 15,
20].

In the rest of this section, we briefly describe the stream-function space. A
more detailed discussion can be found in [11]. Let ̂ ^ b e the divergence-free
subspace of i^h\ i.e.,

j f * = {v6 irh; v . v = 0} .

It follows that any flux v e 3tfh can be expressed as the cur! of a stream
function <f> e Hl(f2). Furthermore, the stream function <f> is uniquely
determined in HQ(Q ), since the flux has zero boundary value in the normal
direction to 3/2. The stream-function space £fh is the set of all stream
functions with vanishing boundary values. The following is a characterization
of stream function spaces for some known families in the mixed finite
element method.

THEOREM 2.1 : Let £fh dénote the stream-function space. Then,
(1) for the triangular RT element of index j 5=0 (cf. [20]), we have

<fi\Ke P} + 1{K), K e Kk} ;
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MULTILEVEL MIXED FINITE ELEMENT 381

(2) for the BDFM element of index j (cf. [8]), we have

(3) for the rectangular RT element of index r (cf. [20]), we have

(4) for the BDM element of index j ^ l (cf. [9]), we have

Remark 2.1 : We can define the stream-function space for problems with
nonhomogeneous Neumann or Dirichlet boundary conditions. We emphasize
that the forthcoming algorithms in Section 3 can be applied to such problems
without any difficulty.

3. MULTILEVEL DECOMPOSITION ITERATIVE METHODS

Let ISo be an intentionally coarse initial triangulation of O. For
i = 1, . . . , / , let TZt be the triangulation obtained by breaking every triangle
(rectangle) of TS, _ x into four subtriangles (subrectangles) by Connecting the
mid-points of each edge (opposite edges, respectively). Dénote also by
^h = Tij the finest triangulation of 12. The triangles of the triangulation
TS( are called Ie vel / éléments. The vertices of Ie vel i éléments are called Ie vel
i nodes.

Let y\A x Wh
x be the finite element space associated with 7S(. For any

f e W\ let

where Qh
t is the Standard L2 projection operator onto the space W* and

#i=0.

LEMMA 3.1 : Let /f be as above. Then

ƒ*= £ ƒ?• (3-2)
i =0

Furthermore, the functions /f, i = 1, . . . , / , have vanishing mean values on
each element of level i — 1.

vol 28, na 4, 1994



382 R. E. EWING, J. WANG

Proof : Note that Q) is the identity operator on Wh = W). It follows from
(3.1) that

j

Also, (3.1) implies that the mean value of ƒ f vanishes on each element of
level i — l since the spaces Wh

k are nested, and then ö f - i / A is t n e

L2 projection of Qh
t f

h in Wh
t _ t. D

As in the Schwarz alternating algorithm {cf. [11]), we first find a discrete
flux whose divergence is fh. Our method is based on the décomposition
(3.2). Let Jt§ = ^ o a nd ^ f ^ e t n e subspace of iri? consisting of those
fluxes whose boundary values in the normal component of the boundary of
level i — 1 éléments are zero ; i.e.,

Jt* = {v e T f̂, v . vBT = 0 , on 3T and l e ^ ^ } , (3.3)

for i = 1, . . . , / . The corresponding pressure spaces are defined by taking
WQ = WQ and

W? = \we W^ \wdx = 0, for all TeK^A, (3.4)
[ JT J

for / = 1, . . . , / . It follows from Lemma 3.i that /f e lr/f.

Multilevel Décomposition Algorithm (MDA) (Part 1) : Let fh be the
L2 projection of the right-hand side function ƒ of (1.1) in Wh. Let
/ f e Wh

t be as in (3.2).

(1) For i = 0, ..., / , solve (uf ; 0?) e Jt* x Wh
% by

(cuf, v ) - (V .v , 6>f) = 0 , veiff,

(V . uf, w) = (ƒ?, w ) , w e W? ,

where c is an arbitrary positive function defined on /2.

(2) Set

u*= Xu"- (3-6>
i = 0

LEMMA 3.2 : L^r u* be obtained by above algorithm. Then

V.u* = ƒ*. (3.7)
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Proof : It is obvious that

for i = 0, ..., / . Thus, it follows from (3.2) that (3.7) is valid. D

Remark 3J : The solution of (3.5) can be obtained by solving some local
problems. To see this, we note that the space Jt\ is the direct surn of
subspaces defined on disjoint subdomains CEK, where TSK are éléments of
level i — 1. Thus, the problem (3.5) is equivalent to subproblems restricted
to the subdomain TSK (with vanishing boundary value in the normal
direction). The only exception is the solution of (u§ ; #Q) which is defined on
the coarse level and, therefore, can not be split into local problems.
Ho we ver, the coarse level problem should not cost much to compute.

Remark 3.2 : As already noted in [11], the coefficient c in (3.5) may differ
from c in the computation. This is true because our object here is only to find
a flux uf satisfying the second équation of (3.5). For conveniencé, one may
take c - 1 or c = c in the computation.

Remark 3.3 : The MDA (Part 1) provides a way to find the desired
u* based on the natural multilevel décomposition (3.1) for fh. In practice,
there are other methods available. The numerical experiments in § 5 use a
different approach to construct u* for rectangular domains.

By letting üh = nh - u*, the mixed finite element discretization problem
(1.4) is equivalent to seeking (ûh ; ph) E Vh xWh satisfying

(cû\ v) - (V . v, ph) = - (cu*, v ) , v e f ^

( V . û \ w ) = 0 , wsWh,

which is equivalent to the détermination of an û* e Jfh such that

(cû\ v) = - ( cu* , v ) , veJfh. (3.9)

It is clear that the problem (3.9) is positive definite for the new flux
üh. However, we have trouble in constructing a good basis for the
divergence-free subspace Jf\ We have proposed (cf. [11]) to solve (3.9) by
employing the stream-function space for Jf\ which effectively leads to a
Standard Galerkin method for a second-order elliptic équation. Thus, all the
results in solution method developed for the Galerkin method can be applied
dkectly to the reduced saddle-point problem (which is elliptic on the stream-
function space).

Ho we ver, here we would like to study the problem (3.9) in its present
form. Following the idea presented in [11] for the Schwarz alternating
method, we propose two itérative algorithms for solving (3.9) based on a
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certain multilevel structures of the space irh. The methods are similar to the
multilevel décomposition itérative procedure proposed in [23, 24] for the
Galerkin method. In gênerai, the technique can be regarded as an extension
of the standard multigrid method. The idea here is to replace the standard
smoothing (e.g. the Gauss-Seidel and Jacobi) in the multigrid method by the
Schwarz alternating method or additive Schwarz method for each level.

To illustrate the procedure, let JTx be the set of level i nodes for
i = 0 , 1, . . . , / . Associated with each node xlkeJTl9 let Olk be the
subdomain of O consisting of level / éléments having xlk as a common
vertex. It is clear that { ^ j j T - i forms an overlapping décomposition of
Oy where ml is the number of level / nodes. Let ^ ( > J t x Wlik be the
corresponding finite element space of level i defined on O lk with the natural
partition induced from TS(. Accordingly, let J€lk be the divergence-free
subspace of *¥* t k. The second part of the MDA can then be stated as foliows.

Multilevel Décomposition Algorithm-1 (MDA-1) (Part 2) : Given ûj e Jt\
an approximation of the solution of (3.5), we seek the next approximate
solution ûj + i e Jj?h as follows :

(1) Define Zo e ^ ^ by

(2) For ï = î , ..., / , Iet Yo = Zt_x and

where Pt k is the projection operator onto JtfK k with respect to the
( . , . )c = (c., . ) inner product. Then, we let Z, = Ymr

(3) Setû£ + 1 = Z y .

Remark 3,4 : The projection operator P lJc is defined locally on each
(macro-element) Oltk. In practice, we have to solve a local problem on
flt k to détermine this operator ; the computation of such local problems is
cheap. Mathew [19] proposed to find P t k by solving a saddle point problem
on Oltk. More precisely, for any ^ e f1', Pt,kX is the same as
u( k e Jth k defined by

(»,, h v)c - (V . v, pIf k) = Cr, v ) c , v G TT(i k ,

where, of course, pu k e Wlk. The authors of [11] suggested an approach by
using the stream-function space ; i.e., by letting Sf\t k be the stream function
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MULTILEVEL MIXED FINITE ELEMENT 385

space of Jft k, the détermination of P t k x is given by seeking curl <f>, with
<f> e Sf uk> satisfying

(curl </>, curl $%= (x, curl $ ) c , for all *// e £f % k . (3.11)

Since the Schwarz alternating method is an analogue of the SOR itérative
method for matrix computation (cf [5, 22, 23]), we see that the MDA-1
(Part 2) is actually an analogue of the multigrid algorithm based on the SOR
smoothing for each level. Due to this connection, we propose to modify
MDA-1 (Part 2) by using the additive Schwarz (cf [12]) on each level
/. To do so, let

Rt= £ J»*.,. (3-12)
k= 1

It is clear that the operator Rt is selfadjoint and nonnegative with respect to
the ( . , . X inner product. The properties of Rt can be summarized as
follows.

LEMMA 3.3 : Lei Rt be as above and A( be the largest eigenvalue of
Rr IfTt = À~lRl9 then

(1) there exists a constant C independent of i such that

(2) the operator Tt is selfadjoint with respect to the ( . , . )c inner product
and such that

< r ( r , ) c [0, 1 ] ,

where cr(Tt) dénotes the spectrum of Tr

Proof : It suffices to show that A t has a uniform upper bound
C. Actually, we have

ml mi

( / ? , v , v ) c = £ ( P , , k v , v \ = £ ( P , . k y , P , . k y )
k= 1 k= 1

ml

^ ^ (cv, \)üi k^C(y, v)c,
k= 1

which implies the uniform boundedness of A r D

Multilevel Décomposition Algorithm-2 (MDA-2) (Part 2) : Given ûj e JfPh,
an approximation of the solution of (3.5), we seek the next approximate
solution û^+ i e J#?h as follows :

(1) Define Zo e Jf?H by
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386 R. E EWING, J WANG

(2) For i = 1, ..., J, define Zt by

Z, = Z J _ 1 + a , r i (û*-Z ,_ 1 ) .

(3) Setû* + 1 = Z 7 .

4. CONVERGENCE ANALYSIS

Since the multilevel itérative method is applied to (3.9), which is
selfadjoint and positive definite on the Hilbert space Jfh, the gênerai resuit
developed in [5, 23] (see also [6, 22, 24]) can be employed to establish the
convergence.

For completeness, we cite the result of [23] as follows : Let a(., . ) be a
symmetrie and coercive bilinear form defined on a Hilbert space iT. Assume
that T^\, / = 1, ..., 7, are closed subspaces of if satisfying

Let P t be the projection operator with respect to the form a ( . , . ) • The main
result in [23] is concerned with the norm estimate of the product operator
E:

E = (ƒ -Ü>PJ)(! -<oPj O . . . ( ƒ - < * ƒ > , ) ,

where <o is any real number in (0, 2).

Assume that for any D e f there exist vl e i^ n for i = 1, . . . , / , such that

v = V vt satisfying
j = i

t Ikf^iH2, (4.i)
* — i

£ H^wJ^CoMI2 , (4-2)
i = 2

and

' l l l ^ w ; + 1 | | 2 * C 2 | | P | | 2 (4.3)

for some constants C l5 Co, and C2, where w} = V vk and

|| . || = a ( . , . ) m , Then we have
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THEOREM 4.1 : Assume that (4.1), (4.2), and (4.3) hold. Then

| | £ W | | 2 =s;rH| 2 , for all ue"T, (4.4)

where

(4.5)

or

r = 1 - )r if «> = 1 . (4.6)

We show in the following that the error réduction operators of MDA's
(Part 2) have the product form E.

LEMMA 4.1 : Let the MDA's (Part 2) be as in Section 3. Set

È,= Y\ (/ - » / » , . * ) , (4.7)

for i = 1, ..., J and Éo = (I - coP0). 77z<?« //ïé? MDA-1 (Part 2) has the

following error réduction operator

E=Y\É,. (4.8)
i = 0

The MDA-2 (Part 2) has an error réduction operator

E= f] (ƒ -û>r , ) . (4.9)

The proof of (4.8) and (4.9) is straightforward, since the MDA's (Part 2)
are special cases of the product algorithm (cf [5, 23]).

To estimate the norm of the product operator E for MDA-1 (Part 2), it
suffices to check the conditions of Theorem 4.1. First of all, we point out that
the bilinear form in this application is given by ( . , . )c = (c . , . ). Naturally,
dénote by ||v|| = (v, v)^2 the norm of the flux veJfh. Note that
E is the product of operators I — P t k. Hence, we need to show that for any

/ mt

v e j f * there exist v( k e Jft k and v0 e Jf 0 such that v = v0 + £ £ v(i k9
i = 1 k~ 1

satisfying analogues of (4.1), (4.2), and (4.3) with « good » estimâtes of the
constants.
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388 R. E. EWING, J. WANG

LEMMA 4 . 2 : For any v e #fh, there exists a décomposition {vZ J t},
described as above, which satisfies the assumptions (4.1), (4.2), and (4.3)
with

Ct - O(J), i = O, 1, 2 . (4.10)

Proof : Let o-eS^h be the stream function of v e 3%?h. Let
cr0 = Qo a e <9% and at = (Qt - Ql _ x) o- e 5^ , for i = 1, ..., / , where

Qx is the c(x)-weighted L2 projection operator onto the stream-function space
Sfl for level /. It is clear that

To define a décomposition for v, let {<f>lyk} be a partition of unity

subordinated to the décomposition {&lik} kLi f ° r level i described in

Section 3. Set

vZj k — c u r l Ih {<f>t k crl ) , (4.12)

where Ih{ is the nodal interpolation operator onto the stream-function space
#V It follows from (4.12) and (4.11) that {v, k} forms a décomposition of v.
Now we show that the assumptions (4.1), (4.2), and (4.3) are satisfied with
C( estimated by (4.10).

For simplicity, we establish the estimate of C x oniy ; the analysis can be
extended to Co and C2 without any difficulty. Thus, we want to show that
there exists a constant C such that

KH2+ £ I K t | |
2*C/| |v | |2 . (4.13)

l = 1 Jfc = 1

Actually, it is straightforward to see that there exists a constant C such that

|V0JjJk| ^Ch;1 . (4.14)

It follows that

i \ c(x)\Vat\
2dx^h;2 f

for some constant C Thus,

^ II il 2 ^ / f , M ^ ,2 j 7-2 f
L \ \ y i , k \ \ ^ L \ \ c ( x ) \ V ( r i \ d x + h t

l

(4.15)
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where || • || K dénote the weighted norms in HK (O ) with weight function
c(x) for K = 0,1. Using the estimate

we obtain

£ | | v , , t | |
2 ^C| |v | | 2 . (4.17)

k= l

Also, it is easy to see that

||vo|| = Ijcurl ( Ö o ^ ) | | ^ | | ö o ^ | | l f C ^ C | | c r | | l i C ^ C | | v | | . (4.18)

Thus, combining (4.16) and (4.17) complètes the proof of (4.13). •

Remark 4.1 : The estimâtes (4.16) and (4.18) are obvious for any constant
coefficient c(x). In the présence of a large jump of c(x), they are still valid
under some situations. See [6] for a discussion.

As a conséquence of Lemma 4.2 and Theorem 4.1 we have the following
resuit for the convergence of the MDA-1 (Part 2).

THEOREM 4.2 : There exists a constant C such that the convergence of the
MDA-1 (Part 2) is bounded by

( 4 1 9 )

We now turn to the convergence analysis of MDA-2 (Part 2). As indicated
by Lemma 4.1, this algorithm has the error réduction operator E defined by
(4.9), in which the operators Tt are no longer projectors. Thus, Theorem 4.1
can not be applied directly to provide a convergence estimate. However, it is
possible to obtain an estimate by combining the idea presented in [5] and the
proof of Theorem 4.1 in [23].

THEOREM 4.3 : There exists a constant C such that the convergence of the
MDA-2 (Part 2) is bounded by

(4.20)

We need the following resuit to establish (4.20).
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LEMMA 4.3 : For any v, € Jf f, /er <rf de r&e stream function of
vf. TTze/i f/iere exists a constant C such that

for all uejfh. (4.21)

unity subordinated to the décomposition {•#,, *}**'=

Proof : As in the proof of Lemma 4.2, let {<£,t *}*'= i be the partition of

Similarly to (4.15), we have

for some constant C. It follows that

1/2 / «i \ 1/2
"* II II 2

xl/2

which complètes the proof of the lemma. D

Proof of Theorem 4.5 : First of all, it follows from Lemma 3.3 and
[Lemma 2.1, 5] that

» (4.23)

where, as in [5, 23], Et = Tl (I - a>Tk). Further, let a be the stream

function of v and Ql a be the weighted L2 projection of o- in the stream-
function space 5^(. We clearly have

v = £ v, , (4.24)
i = 0
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where v, = curl (Qt er - Qt _ x <r) and Q_ x = 0. By (4.24), we obtain

HI2 = (v, v\= £ (v,v,)c
i = 0

= (v, vo)c + ^ ( £ , . 1 v ) v , ) t + [ ((/ -E,_0 v, v,)c
1 - 1 1 = 1

= 'o + ' i + 7 2 - (4.25)

70 can be estimated as follows :

70 = ( v ' vo)c = (^0V, V0)c

^ (/»ov, v)^||vo|| ^ C x / ^ ^ o v , v)^/2||v|| . (4.26)

To estimate 72, we notice that
i i

I -El_1= Y, <°TkEk-i •

Thus, by changing the order of the double sum and then applying the
Schwarz inequality we obtain

( - 1 k = 0

^ v , curl («r-Ö*o-

v^7||v|| ^
\i = i

. (4.27)
/

As for Il9 we use (4.21) and the estimate

to obtain

h = i o
i = i

j

i = i

j

/ J \112

JJlu ||y|| f ^ K f i , . ^ ^ , . ^ ) , . (4.28)
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Thus, combining (4.25) with (4.26), (4.23), and (4.28) yields

which, together with (4.23), complètes the proof of the theorem. D
The estimâtes (4.19) and (4.20) are established without any regularity

assumption beyond subspaces of //(div, f2 ), necessary to define the weak
form. However, they are level dependent, though the dependence is rather
weak. In the rest of this section, we show that a uniform convergence rate is
possible for the MDA's (Part 2) if more regularity is satisfied. To do so, let
Pn i = 0, . . . , / , be projection operators from Jfh onto J^t defined by

(Pt u, v)c = (u, v) c , for all ueJtT\ v e / r (4.29)

Similarly, let P n i = 0, . - . , / , be projection operators from £fh onto
Sft defined by

(curl P ; f curl &)c= (curl <f>, curl & )c , for all ^ e S? t , (4.30)

where <f> e &>h.

Since $f t is the stream-function space of Jf n we immediately obtain from
(4.29) and (4.30) that

f o-, (4.31)

for i = 0 , . . . , / , where a is the stream function of u.

THEOREM 4.4 : Assume that there exists a constant C such that

| | ^ , o - - ^ - i O - | 0 > c « C A l | P 1 < r - P I _ 1 < r | i i C , aeS?". (4.32)

Then, there exists a constant C such that the convergence of the MDA-2
(Part 2) is bounded by

(4.33)

Proof : Since the proof is similar to that of Theorem 4.3, we merely outline
the proof by pointing out the différences.

The inequality (4.23) is still valid. But we shall décompose v by (4.24)
with

v^^v-P,.^. (4.34)
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Thus, we have (4.25) with same 70, Iu and I2* However, the term
I2 vanishes since by (4.29)

I2=

The term Io can be estimated by (4.26). The estimate of Ix is given as
follows. Since, by (4.34) and (4.31), the stream function of v, is
<rl = Pt a - Pt _i er, where o- e £f his the stream function of v, we can use
Lemma 4.3 to get

Thus, it follows from (4.32) and the Schwarz inequality that

/ / J \ 1/2 / ƒ ^ \ 1/
C l — 1 / r^ / T" r1 r̂  \ 1 / V^ II II 2 \

v*> x ( w r i £ * - i v ' ^ - i v ) c ) Z llv^ll
\i = i / \( = i /

F u r t h e r m o r e , w e n o t i c e t h a t | | v j | 2 = H ^ v | | 2 - \\Pt.x v | | 2 . T h u s ,

!

Ï^C V ^ - ^ l l v l l 2 - ||P0v||2)1/2

which, along with (4.26) and (4.25), implies that

£ K^^v^,.^). (4.35)

Finally, combining (4.23) and (4.35) yields the estimate (4.33). •
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5. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to illustrate our theory
established in this paper. For simplicity, we consider the problem (1.2) with
c = 1. The domain O = (0,1 ) x (0, 1 ) is the unit square. The homogeneous
Neumann boundary condition is imposed on 3J2. The right-hand side
function is

f(x, y) = 2 TT2COS TTXcos try , (JC, y) e 12 ,

and the exact solution is

p(x, y) = cos 7TX cos iry .

It is clear from the définition of the flux that u = (uu u2) where

ux = 77 sin irx cos try , w2 = TT COS TTX sin iry .

The RT space of the lowest order is used in the computation. We begin
with a uniform 2 x 2 grid. The code is used to refine each coarse element
(square) into four congruent small squares, obtaining a fine mesh with
(2y + 1 )2 nodal points. The number / is said to be the number of levels of the
refinement. In the MDA (Part 1), the code does not quite follow the idea
presented in the paper because of the use of a different décomposition (the
procedure suggested in the paper is more applicable to adaptively refined
meshes). More preciseiy, for the computalion presented, the discrete flux
u* satisfying (3.1) is obtained according to the following décomposition for
O. Let T5A be the fine mesh of /2. Define TS0 to be the collection of
2J « thin » strips (see fig. 1). Each element (strip) has a partition inherited
from T^. Thus, we can use the MDA (Part 1) to construct the desired discrete
flux u*.

s

s

tri

tri

P '

P ;

! 7

\ 2

Figure 1. — Illustration of an 8 x 8 rectangular partition.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



MULTILEVEL MIXED FINITE ELEMENT 395

Af ter we have u *, we apply the MDA (Part 2) to approximate the new flux
û\ We summarize the numerical result obtained by using MDA-1 (Part 2) in
Tables 5.1-5.2 from which we see that the relaxation parameter a> can speed
up the convergence of the algorithm. But we see no différence in the
convergence estimate.

The number of accurate digits is defined by

Digits = — log
l u * - u i

where is the Standard L nota and u* = nn + u * is the approximate
solution of the finite element approximation nh.

The results in Tables 5.3-5.4 are obtained by using MDA-2 with different
choices of À,-. We found that the best choice for this number is 1.

The average rate of convergence of the MDA's is presented in Table 5.5.
We emphasize that, according to our theory, the rate of convergence of the
MDA's is independent of the number of levels in our computational
example. This is verified by the numbers in the Table as well.

Table 5.1. — Convergence of the MDA-1 with to = 1.

Itération

Digits (/ = 5)
Digits (ƒ = 6)
Digits (/ = 7)
Digits (/ = 8)

1

0.71
0.71
0.71
0.71

2

1.44
1.44
1.44
1.44

3

2.20
2.19
2.19
2.19

4

2.96
2.98
2.98
2.97

5

3.36
3.70
3.75
3.76

6

3.39
3.97
4.33
4.40

7

3.40
4.00
4.56
4.89

8

5.15

9

5.20

Table 5.2. — Convergence of the MDA-1 with <* = 1.2.

Itération

Digits (/ = 5)
Digits (J = 6)
Digits (ƒ = 7)
Digits (/ = 8)

1

0.95
0.95
0.95
0.95

2

1.97
1.96
1.95
1.95

3

2.71
2.76
2.78
2.78

4

3.22
3.41
3.45
3.46

5

3.37
3.84
4.01
4.03

6

3.39
3.98
4.47
4.64

7

3.40
4.00
4.59
5.12

8

—
4.60
5.20

9

—
—
—
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Table 5.3. — Convergence of the MDA-2 with XJl = 1.

Itération

Digits (/ =
Digits (/ =
Digits (/ =
Digits (/ =

Itération

Digits (/ =
Digits (/ =
Digits (/ =
Digits (/ =

5)
6)
7)
8)

2

1.23
1.22
L22
1.22

Table 5.4

5)
6)
7)
8)

7

3.22
3.33
3.34
3.34

3

1.84
L84
1.84
1.84

4

2.47
2.47
2.46
2.46

5

3.05
3.09
3.09
3.09

. — Convergence of the

8

3.36
3.70
3.76
3.77

9

3.39
3.92
4.14
4.17

10

3.40
3.98
4.43
4.55

6

3.35
3.67
3.72
3.73

MDA-2

11

4.00
4.56
4.87

7

3.39
3.96
4.30
4.36

with A;

12

.—
4.59
5.08

8

3.99
4.57
4.94

*=0.9.

13

—
4.60
5.17

9

4.00
4.60
5.18

14

—
—

5.19

10

—
—

5.20

15

—
—

5.20

Table 5.5. — The average rate of convergence of MDA.

MDA-1 (o) = 1)
MDA-1 (<o = 1.2)
MDA-2 (Af1 = 0.9)
MDA-2 (Af1 = 1)

d(J = 5)

0.33
0.33
0.46
0.33

Ö(J = 6)

0.27
0.27
0.43
0.32

§(/ = 7)

0.27
0.27
0.44
0.31

Ô(J = 8)

0.26
0.22
0.45
0.30
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