@article{M2AN_1994__28_3_329_0, author = {Messaoudi, K. and Michaille, G.}, title = {Stochastic homogenization of nonconvex integral functionals}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {329--356}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {3}, year = {1994}, mrnumber = {1275348}, zbl = {0818.60029}, language = {en}, url = {http://www.numdam.org/item/M2AN_1994__28_3_329_0/} }
TY - JOUR AU - Messaoudi, K. AU - Michaille, G. TI - Stochastic homogenization of nonconvex integral functionals JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 329 EP - 356 VL - 28 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1994__28_3_329_0/ LA - en ID - M2AN_1994__28_3_329_0 ER -
%0 Journal Article %A Messaoudi, K. %A Michaille, G. %T Stochastic homogenization of nonconvex integral functionals %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 329-356 %V 28 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1994__28_3_329_0/ %G en %F M2AN_1994__28_3_329_0
Messaoudi, K.; Michaille, G. Stochastic homogenization of nonconvex integral functionals. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 3, pp. 329-356. http://www.numdam.org/item/M2AN_1994__28_3_329_0/
[1] Ergodic theorem for superadditive processes, J. Reine angew. Math., 323,53-67. | MR | Zbl
and , 1981,[2] Variational Convergence for functions and operators, Research Notes in Mathematics, Pitman, London. | MR | Zbl
, 1984,[3] Convergence of convex concave saddle functions : applications to convex programming and mecanics, Ann. Inst. H. Poincaré, 5, n° 6, 537-572. | Numdam | MR | Zbl
, and , 1988,[4] Set Valued Analysis, Birkhäuser. | MR | Zbl
and , 1990,[5] Wl,P-Quasiconvexity and Variational Problems for Multiple Integrals, Journal of Functional Analysis, 58, 222-253. | MR | Zbl
and , 1984,[6] Processus Aléatoires et Applications, Hermann.
, 1988,[7] Homogenization for some almost periodic coercive functionals, Rend. acad. naz., XL 103, 313-322. | MR | Zbl
, 1985,[8] Convex Analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer. | MR | Zbl
and , 1977,[9] Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, Springer. | MR | Zbl
, 1989,[10] A general Theory of Variational Functionals, In F. STROCCHI et al., Topics in Functional Analysis 1980-1981, Scuola Normale Superiore, Pisa, 149-221. | MR | Zbl
and ,[11] 1985, Non Linear Stochastic Homogenization, Ann. Mat. Pura Appl, 346-389. | MR | Zbl
[12] 1986, Non Linear Stochastic Homogenization and Ergodic Theory, J. Reine angew. Math., 363, 27-42. | EuDML | MR | Zbl
[13] Convex analysis and variational problems, North-Holland. | MR | Zbl
and , 1978,[14] Quasi-convexity and the semicontinuity of multiple integrals, Pacific J. Math., 2, 25-53. | MR | Zbl
, 1952,[15] Homogenization of Non Convex Integral Functionals and Cellular Elastic Material, Arch. Rat. Mec., 189-212. | MR | Zbl
, 1987,[16] Sur quelques méthodes en mécaniques aléatoire, thèse de l'E.N.P.C.
, 1989,