A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 2, pp. 141-176.
@article{M2AN_1994__28_2_141_0,
     author = {B\'ecache, E. and Ha Duong, T.},
     title = {A space-time variational formulation for the boundary integral equation in a {2D} elastic crack problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {141--176},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {28},
     number = {2},
     year = {1994},
     mrnumber = {1267196},
     zbl = {0817.73067},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1994__28_2_141_0/}
}
TY  - JOUR
AU  - Bécache, E.
AU  - Ha Duong, T.
TI  - A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1994
SP  - 141
EP  - 176
VL  - 28
IS  - 2
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1994__28_2_141_0/
LA  - en
ID  - M2AN_1994__28_2_141_0
ER  - 
%0 Journal Article
%A Bécache, E.
%A Ha Duong, T.
%T A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1994
%P 141-176
%V 28
%N 2
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1994__28_2_141_0/
%G en
%F M2AN_1994__28_2_141_0
Bécache, E.; Ha Duong, T. A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 2, pp. 141-176. http://www.numdam.org/item/M2AN_1994__28_2_141_0/

[1] A. Bamberger and T. Ha Duong, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique, Math. Methods Appl. Sci., 8, 405-435. | MR | Zbl

[2] A. Bamberger and T. Ha Duong, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique; Problème de Neumann, Math. Methods Appl. Sci., 8, 598-608. | MR | Zbl

[3] A. Bamberger, 1983, Approximation de la diffraction d'ondes élastiques, une nouvelle approche (I), (II), (III), Technical report, École Polytechnique, CMAP, Rapports Internes n° 91, 96, 98. | Zbl

[4] E. Bécache, 1991, Résolution par une méthode d'équations intégrales d'un problème de diffraction d'ondes élastiques transitoires par une fissure. PhD thesis, Université de Paris 6. Thèse.

[5] E. Bécache, 1993, A Variational Boundary Integral Equation Method for an Elastodynamic Antiplane Crack, Int. J. for Numerical Meth. in Eng., 36, 969-984 | MR | Zbl

[6] E. Bécache, J.-C. Nédélec, N. Nishimura, 1993, Regularization in 3D for Anisotropic Elastodynamic Crack and Obstacle Problems, J. of Elasticity, 31, 25-46. | MR | Zbl

[7] D. E. Beskos, 1987, Boundary elements methods in dynamic analysis, Appl. Mech. Rev., 40, 1-23.

[8] M. Bonnet, 1986, Méthode des équations intégrales régularisées en élastodynamyque, PhD thesis, ENPC, Thèse. | MR | Zbl

[9] H. D. Bui, 1977, An intgral equations method for sol ving the problems of a plane crack of arbitrary shape, J. Mech. Phys. Solids, 25, 29-39. | MR | Zbl

[10] P. Cortey-Dumont, 1984, Simulation Numérique de Problèmes de Diffraction d'Ondes par une Fisure, PhD thesis, Université Paris VI, Thèse d'État.

[11] R. Dautray and J. L. Lions, 1985, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 2. Masson. | Zbl

[12] T. Ha Duong, 1990, On the transient acoustic scattering by a flat object, Japan J. Appl. Math., 7, 489-513. | MR | Zbl

[13] T. Ha Duong, 1992, On the boundary integral equations for the crack opening displacement of flat cracks, Integr. Equat. Oper. Th., 15, 427-453. | MR | Zbl

[14] V. A. Kondrat'Ev and O. A. Oleinik, 1988, Boundary-value problems for the System of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, 43, 65-119. | MR | Zbl

[15] G. Krishnasamy, F. J. Rizzo and T. J. Rudolphi, 1991, Hypersingular boundary integral equations : Their occurrence interpretation, regularization and computation. In P. K. Banerjee and S. Kobayashi, editors, Developments in Boundary Element Methods, vol. 7 ; Advanced Dynamic Analysis, Elsevier Applied Science Publishers.

[16] J. L. Lions and E. Magenes, 1968, Problèmes aux limites non homogènes et Applicaitons, vol. l, Dunod. | Zbl

[17] Ch. Lubich, On multistep time discretization of linear initial-boundary value problems and their boundary integral equations, submitted to Numerische Mathematik. | Zbl

[18] P. A. Martin and F. J. Rizzo, 1989, On boundary integral equations for crack problems, Proc. Roy. Soc. London A, 421, 341-355. | MR | Zbl

[19] J. C. Nédélec, 1982, Intégral Equations with non Integrable Kernels, Intégral Equations and Operator Theory, 5, 562-572. | MR | Zbl

[20] J. C. Nédélec, 1983, Le Potentiel de Double Couche pour les Ondes Élastique, Internal report n° 99, C.M.A.P., École Polytechnique.

[21] N. Nishimura, Q. C. Guo, S. Kobayashi, 1987, Boundary Integral Equation Methods in Elastodynamic Crack Problems, In Brebbia, Wendland, and Kuhn, editors, Proc. 9th Int. Conf. BEM, vol. 2 : Stress Analysis Applications, pp. 279-291. Springer-Verlag.

[22] N. Nishimura and S. Kobayashi, 1989, A regularized boundary integral equation method for elastodynamic crack problems, Computat. Mech., 4, 319-328. | Zbl

[23] J. A. Nitsche, 1981, On Korn's second inequality, RAIRO, Analyse numérique, 15, 237-248. | Numdam | MR | Zbl

[24] V. Sladek and J. Sladek, 1984, Transient elastodynamic three-dimensional problems in cracked bodies, Appl. Math. Model, 8, 2-10. | MR | Zbl

[25] I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons. | MR | Zbl

[26] E. P. Stephan, 1986, A Boundary Integral Equation Method for Three-Dimensional Crack Problem in Elasticity, Math. Meth. in the Appl. Sci., 8, 609-623. | MR | Zbl

[27] E. P. Stephan, 1987, Boundary Integral Equation for screen problem in R3 Integral Eq. and Oper. Theory, 10, 263. | Zbl

[28] Treves, 1975, Basic Linear Partial Differential Equations, Academic Press. | Zbl