@article{M2AN_1994__28_1_95_0, author = {Boyer, R.}, title = {Algorithmes de type {F.A.C.} en optimisation convexe}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {95--119}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {1}, year = {1994}, mrnumber = {1259269}, zbl = {0822.65043}, language = {fr}, url = {http://www.numdam.org/item/M2AN_1994__28_1_95_0/} }
TY - JOUR AU - Boyer, R. TI - Algorithmes de type F.A.C. en optimisation convexe JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 95 EP - 119 VL - 28 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1994__28_1_95_0/ LA - fr ID - M2AN_1994__28_1_95_0 ER -
Boyer, R. Algorithmes de type F.A.C. en optimisation convexe. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 1, pp. 95-119. http://www.numdam.org/item/M2AN_1994__28_1_95_0/
[1] Multigrid methods in convex optimization, 2nd European Conference on Multigrid Methods Köln 1985, GMD Studien n° 110. | Zbl
and , 1985,[2] Méthodes multigrilles en optimisation convexe, Rapport interne Math. Appli., Université de Provence.
et , 1986,[3] Méthode FAC pour un problème de type obstacle, C.R., Acad. Sci., Paris 315, série I, p. 1013-1016. | MR | Zbl
, 1992,[4] Optimisation : théorie et algorithmes, Dunod. | MR | Zbl
, 1972,[5] Multigrid methods and application Springer Verlag. | MR | Zbl
, 1985,[6] A multilevel iterative method for symmetrie positive definite linear complementary problems, Appl. Maths. Optim. 11, 77-95. | MR | Zbl
, 1984,[7] Fast adaptive composite grid method for elliptic boundary value problems, Math. of computation 46 439-456. | MR | Zbl
and , 1986,[8] Multilevel adaptive methods for partial differential equations, Frontiers in Appl. Maths. SIAM Philadelphia. | MR | Zbl
, 1989,[9] Computational methods in Optimization, Academic. Press. | MR
, 1971,