A boundary element procedure for contact problems in plane linear elastostatics
ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 4, pp. 457-480.
@article{M2AN_1993__27_4_457_0,
     author = {Gwinner, J. and Stephan, E. P.},
     title = {A boundary element procedure for contact problems in plane linear elastostatics},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {457--480},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {27},
     number = {4},
     year = {1993},
     mrnumber = {1230830},
     zbl = {0773.73096},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1993__27_4_457_0/}
}
TY  - JOUR
AU  - Gwinner, J.
AU  - Stephan, E. P.
TI  - A boundary element procedure for contact problems in plane linear elastostatics
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1993
SP  - 457
EP  - 480
VL  - 27
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1993__27_4_457_0/
LA  - en
ID  - M2AN_1993__27_4_457_0
ER  - 
%0 Journal Article
%A Gwinner, J.
%A Stephan, E. P.
%T A boundary element procedure for contact problems in plane linear elastostatics
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1993
%P 457-480
%V 27
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1993__27_4_457_0/
%G en
%F M2AN_1993__27_4_457_0
Gwinner, J.; Stephan, E. P. A boundary element procedure for contact problems in plane linear elastostatics. ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 4, pp. 457-480. http://www.numdam.org/item/M2AN_1993__27_4_457_0/

[1] I. Babuška and A. K. Aziz, Survey lectures on the mathematicalformulation ofthe finite element method, in The Mathematical Foundation of the Finite Element Method (A. K. Aziz, ed.) Academic Press, New York, 1972, pp. 3-359. | MR | Zbl

[2] M. Costabel, Boundary integral operators on Lipschitz domains : Elementary results, SIAM J. Math. Anal. 19, 1988, pp. 613-626. | MR | Zbl

[3] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4, Integral Equations and Numerical Methods, Springer, Berlin, 1990. | MR

[4] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976. | MR | Zbl

[5] J. Elschner, On spline approximation for a class of integral equations, I : Galerkin and collocation methods with piecewise polynomials, Math. Methods in the Applied Sciences 10, 1988, pp. 543-559. | MR | Zbl

[6] H. Engels, Numerical Quadrature and Cubature, Academic Press, New York, 1980. | MR | Zbl

[7] G. I. Èskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Translations of Mathematical Monographs, Vol. 52, American Mathematical Society, Providence, 1981. | MR | Zbl

[8] G. Fichera, Boundary value problems of elasticity with unilateral constraints, in Handbuch der Physik - Encyclopedia of Physics, Band VI a/2 Festkörper-mechanikll, Springer, Berlin, 1972, pp. 391-424.

[9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984. | MR | Zbl

[10] R. Glowinski, J. L. Lions and R. Trémolières, Numerical Analysis ofVariational Inequalities, North-Holland, Amsterdam, 1981. | MR | Zbl

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. | MR | Zbl

[12] J. Gwinner, Discretization of semicoercive variational inequalities, Aequationes Mathematicae 42, 1991, pp. 72-79. | MR | Zbl

[13] G. Hämmerlin and K. H. Hoffmann, Numerische Mathematik, Springer, 1989. | MR | Zbl

[14] H. Han, A direct boundary element method for Signorini problems, Math. Computation 55, 1990, pp.115-128. | MR | Zbl

[15] I. Hlavaček, J. Haslinger, J. Nečas and J. Lovišek, Solution of Variational Inequalities in Mechanics, Springer, Berlin, 1988. | MR | Zbl

[16] I. Hlavaček and J. Lovišek, A finite element analysis for the Signorini problem in plane elastostatics, Aplikace Mat. 22, 1977, pp. 215-228. | MR | Zbl

[17] G. C. Hsiao, E. P. Stephan, W. L. Wendland, On the Dirichlet problem in elasticity for a domain exterior to an arc, J. Computational Appl. Mathematics 34, 1991, pp. 1-19. | MR | Zbl

[18] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity : a Study ofariational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988. | MR | Zbl

[19] V.A. Kondratiev and O.A. Oleinik, On Korn's inequalities, C.R. Acad. Sci. Paris I 308, 1989, pp. 483-487. | MR | Zbl

[20] V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israël Program for Scientific Translations, Jerusalem, 1965. | MR | Zbl

[21] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili and T. V. Urchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979. | MR | Zbl

[22] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of lasticity, Noordhoff, Groningen, 1963. | MR | Zbl

[23] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Masson, Prague, Paris, 1967. | MR

[24] J. C. Nedelec, Approximation des Équations Intégrales en Mécanique et en Physique, Lecture Notes, Centre Math. Appl., École polytechnique, Palaiseau, France 1977.

[25] J. C. Nedelec, Integral equations with non integrable kernels, Integral Equations and Operator Theory 5, 1982, pp. 562-582. | MR | Zbl

[26] J. A. Nitsche, On Korn's second inequality, R.A.I.R.O. Anal. Numér. 15, 1981, pp. 237-248. | Numdam | MR | Zbl

[27] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhauser, Basel, 1985. | MR | Zbl

[28] P. D. Panagiotopoulos, Boundary integral « equation » methods for the Signorini-Fichera problem, in Boundary Elements 7, vol. 2, exp. No. 12, 1985, pp. 73-83. | MR | Zbl

[29] R. Sauer, Anfangswertprobleme bei partiellen Dijferentialgleichungen, Springer, Berlin, 1952. | MR | Zbl

[30] A. Signorlni, Sopra alcune questioni di elastostatica, Atti délia Società Italiana per il Progresso della Scienze, 1933. | JFM

[31] W. L. Wendland, On some mathematical aspects of boundary elementmethods for elliptic problems, in MAFELAP V (J. R. Whiteman, éd.), Academic Press, New York, 1985, pp. 193-227. | MR | Zbl

[32] W. L. Wendland and E. P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems, Arch. Rational Mech. Anal 112, 1990, pp. 363-390. | MR | Zbl