Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée
ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 3, pp. 349-374.
@article{M2AN_1993__27_3_349_0,
     author = {Lemordant, J. and Tao, Pham Dinh and Zouaki, H.},
     title = {Mod\'elisation et optimisation num\'erique pour la reconstruction d'un poly\`edre \`a partir de son image gaussienne g\'en\'eralis\'ee},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {349--374},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {27},
     number = {3},
     year = {1993},
     mrnumber = {1221059},
     zbl = {0774.65102},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1993__27_3_349_0/}
}
TY  - JOUR
AU  - Lemordant, J.
AU  - Tao, Pham Dinh
AU  - Zouaki, H.
TI  - Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1993
SP  - 349
EP  - 374
VL  - 27
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1993__27_3_349_0/
LA  - fr
ID  - M2AN_1993__27_3_349_0
ER  - 
%0 Journal Article
%A Lemordant, J.
%A Tao, Pham Dinh
%A Zouaki, H.
%T Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1993
%P 349-374
%V 27
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1993__27_3_349_0/
%G fr
%F M2AN_1993__27_3_349_0
Lemordant, J.; Tao, Pham Dinh; Zouaki, H. Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée. ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 3, pp. 349-374. http://www.numdam.org/item/M2AN_1993__27_3_349_0/

[1] M. Berger, Géométrie volume 3, convexes et polytopes, polyèdres réguliers, aires et volumes, Nathan, Paris, 1978. | MR | Zbl

[2] P. Broux, Using the Gaussian image to find the orientation of objects, Int. J. Robotics Res., vol. 3, n° 4, 1984.

[3] D. R. Chand and S. S. Kapur, An algorithm for convex polytopes, JACM, vol. 17, n° 1, January 1970, pp. 78-86. | MR | Zbl

[4] M. P. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall, New Jersey, 1976. | MR | Zbl

[5] H. Edelsbrunner, Algorithms in combinatorial geometry, EATCS Monogr. Theoret. Comput. Sci., vol, 10, Springer Verlag, 1987. | MR | Zbl

[6] H. G. Eggleston, Convexity, Cambridge University Press, 1958. | MR | Zbl

[7] B. Grûnbaum, Convex Polytopes, John Wiley and Sons ltd, London and New York, 1967. | MR | Zbl

[8] D. Hilbert and S. Cohn-Vossen, Geometry and the imagination, Chelsa Publishing company, New York. | MR | Zbl

[9] B. K. P. Horn, Extended Gaussian images, Proceeding of IEEE, pp. 1671- 1686, December 1984.

[10] B. K. P. Horn and K. I. Ikeuchi, The Mechanical manipulation of randomly oriented parts, Scientific American, August 1984.

[11] K. I. Ikeuchi, Recognition of 3D objects using the extended Gaussian image, Proceedings of the seventh I.J.C.A.I., pp. 595-600, 1981.

[12] J. B. Lasserre, An analytical expression and an algorithm for the volume of a convex polyedron in Rn, J.O.T.A., vol. 39, n° 3, March 1983. | MR | Zbl

[13] J. Lemordant, Pham. Dinh. Tao and H. Zouaki, Reconstruction d'un polyèdre à partir de son image gaussienne généralisée, Journée de géométrie algorithmique, INRIA Sophia-Antipolis, 18-20 juin 1990. | MR

[14] J. J. Little, An iterative method for reconstracting convex polyedra from extended Gaussian image, Proceedings of A.A.A.I. 83, pp. 247-250, 1983.

[15] J. J. Little, Recovering shape and determining attitude from extended Gaussian images, Technical report TN 85-2, April 1985. University of British Columbia, Vancouver.

[16] D. G. Luenberger, Introduction to linear and non linear programming, Addison-Wesley, 1973. | Zbl

[17] L. A. Lyusternik, Convex figures and polyedra, Dover publications, New York, 1963. | MR | Zbl

[18] P. Mcmullen and G. C. Shepard, Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971. | MR | Zbl

[19] H. Minkowski, Volumen und oberfläch, Math. Ann., 57, 1903. | EuDML | JFM | MR

[20] M. Minoux, Programmation mathématiques, tome I, Dunod, Paris, 1983. | Zbl

[21] B. Pchenitchny and Y. Daniline, Méthodes numériques dans les problèmes d'extremum, Mir, 1977. | MR | Zbl

[22] A. V. Pogorelov, The Minkowski multidimensional problem, Winston and Sons, 1978. | MR | Zbl

[23] F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points m two and three dimensions, C.A.C.M. vol 20, pp 87 93, 1977. | MR | Zbl

[24] R. T. Rockafellar, The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions, Heldermann Verlag, Berlin. | MR | Zbl

[25] S. Uselton, Surface reconstruction from limited information, U.M.I. Dissertation information service, 1981.

[26] K. Weiler, Edge-based data structure for solid modelling in curved surface environments, IEEE Computer Graphics and Applications, January, 19851985, pp 21-24.

[27] P. Faure and P. Huard, Résolution de programmes mathématiques avec la méthode du gradient réduit, R.F.R.O., n° 36, 1965, pp 167-206. | Zbl

[28] H. Zouaki, Modélisation et optimisation numérique pour la reconstruction d'un polyèdre a partir de son image gaussienne généralisée, These de l'université Joseph Fourier, juillet 1991.