@article{M2AN_1993__27_2_157_0, author = {Haslinger, J. and Hoffmann, K.-H. and Ko\v{c}vara, M.}, title = {Control/fictitious domain method for solving optimal shape design problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {157--182}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {27}, number = {2}, year = {1993}, mrnumber = {1211614}, zbl = {0772.65043}, language = {en}, url = {http://www.numdam.org/item/M2AN_1993__27_2_157_0/} }
TY - JOUR AU - Haslinger, J. AU - Hoffmann, K.-H. AU - Kočvara, M. TI - Control/fictitious domain method for solving optimal shape design problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1993 SP - 157 EP - 182 VL - 27 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1993__27_2_157_0/ LA - en ID - M2AN_1993__27_2_157_0 ER -
%0 Journal Article %A Haslinger, J. %A Hoffmann, K.-H. %A Kočvara, M. %T Control/fictitious domain method for solving optimal shape design problems %J ESAIM: Modélisation mathématique et analyse numérique %D 1993 %P 157-182 %V 27 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1993__27_2_157_0/ %G en %F M2AN_1993__27_2_157_0
Haslinger, J.; Hoffmann, K.-H.; Kočvara, M. Control/fictitious domain method for solving optimal shape design problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 2, pp. 157-182. http://www.numdam.org/item/M2AN_1993__27_2_157_0/
[1] On some imbedding methods applied to fluid dynamics and electro-magnetics, computer methods in applied mechanics and engineering, 91, 1271-1299. | MR
, , , and , 1991,[2] Application de la méthode des éléments finisà l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés, Appl. Math., 2, 130-169. | MR | Zbl
and , 1975,[3] Optimization and Nonsmooth Analysis, J. Wiley & Sons, New York. | MR | Zbl
, 1983,[4] finite Element Approximation of Optimal Shape Design : Theory and Applications, J. Wiley & Sons, Chichester New York-Brisbane-Toronto-Singapore. | MR | Zbl
and , 1988,[5] Les Methodes Directes en Théorie desEquations Elliptiques, Masson, Paris. | MR
, 1967,[6] On using of bundle methods in nondifferentiable optimal control problems. Prob. Contr. lnf. Theory, 15, 275-286. | MR | Zbl
and , 1986,[7] Optimal Shape Design for Elliptic Systems, Springer series in Computational Physics, Springer-Verlag, New York. | MR | Zbl
, 1984,[8] A combination of the bundle approach and the trust region concept, Mathematical Research, 45, Akademie-Verlag, Berlin. | MR | Zbl
and , 1988,[9] Controllability type properties for elliptic systems and applications. To appear in Proceedings of the « International Conference on Control and Estimation of Distributed Parameter Systems », Birkhauser-Verlag. | MR | Zbl
, and , 1991,