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MIXED FINITE ELEMENT METHODS
FOR QUASILINEAR SECOND ORDER EL LIPT IC PROBLEMS :

THE p-VERSION {*)

by F. A. MlLNER 0) and M. SURI (2)

Communicated by R SCOTT

Abstract — The p-version of the finite element method is analyzed for quasilinear second
order elhptic problems in mixed weak form Approximation properties of the Raviart-Thomas
projection are demonstrated and L2-error bounds for the three relevant variables in the mixed
method are denved

Résumé — Nous analysons la version-p de la méthode d'éléments finis mixtes pour des
problèmes quasihnéaires elliptiques du second ordre en forme faible mixte Nous démontrons
des propriétés d'approximation de la projection de Raviart-Thomas et on dérive des bornes de
V erreur dans L2 (O ) pour les trois variables d'intérêt dans la méthode mixte

I. INTRODUCTION

We consider hère the numerical solution of the following boundary-value
problein :

(u) = - V. (ö(M)VM + è(M)) + c(w) = 0 in n ,
M = - flf on df2 ,

where fi is a convex polygon with boundary 9i7, Vw> dénotes the gradient of
the scalar function w and V . v and div v dénote the divergence of the vector
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914 F A . MILNER, M SURI

function v. We shall assume that for r ^ 2 and for each g e Hr~ 1/2(3 fl ) there
exists a unique isolated solution u e Hr(I2) of (1.1) (that is, a solution not
situated at a bifurcation point). Note that Sobolev's embedding theorem
implies then that u e Wr " l ~£* m (f2 ), e > 0, £ <̂  1, which will be needed
throughout the paper.

We shall also assume that the coefficients a : Ô x R -> R,
§ : i2 x R -• R2 and c : O xlR->IR are twice continuously differentiable
with bounded derivatives through second order, and that a(x, q) 5* a1 > 0.
The variable x will be omitted as explicit argument of all functions, except
when necessary to avoid ambiguity.

For 1 =s= s ^ oo and k any nonnegative integer, we let

Wk's(f2)= {ƒ GLs(ü):Da f eLs(H\ \ a \ ̂  k}

dénote the Sobolev space endowed with its standard norm

\a\*k

The subscript J? in the norms will be omitted. Let Hk(O) = Wk>2(f2 ) with
norm || . \\k = || \\k r In particular, the notation || - ||0 will mean || . \\L2(n)

or H . \iLï{nf F o r 0 ^ r < o o ]etWr's(f2\ Wr>s(df2\ Hr(O), and Hr(df2)
dénote the fractional order Sobolev spaces with norms || . ||r s n,
II • II r s e/2' II • II r a anc* II ' II r a/3' respectively, defined by interpolation
[7].

We shall dénote by ( . , . ) the Hilbert inner product in either L2(f2) or
L2(ü)2 and by ( ., . ) the L2-inner product on the boundary of O. The same
notation will be used to indicate the dualities between Wr's(f2) and
Wr> s(f2 Y and Hs(df2) and H~s(dn ), respectively. Throughout the paper, C,
Q, and K will dénote genene positive constants which need not have the
same value in all their occurrences.

Let

V = / /(div ; D ) = {v e L2(n f : div v e L2(f2 )} ,

normed by

and

W =
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MIXED FINITE ELEMENT METHODS : THE p-VERSION 915

The mixed finite element method we shall consider seeks simultaneous
approximations of the solution of (1.1), w, and of the flux

z=-a(u)¥u~b(u). (1.2)

The mixed weak formulation of (1.1) consists of finding (z, u) e V x W
such that

(a(u)ztv)-(u9óïvv)+(P(u)9v)=(g9v.v)9 v

(div z, w) + (c(u\ w) = 0 , w E W,

where we have set

a ( « ) = (1.4)

and v is the outward unit normal vector on 9/2. Our mixed finite element
method is a discrete form of (1.3).

Let IS be a décomposition of O by parallelograms which will be the
« éléments » E and let £?p q(E) = {polynomials f(x,y) on E, of degree

in x and degree =s # in v}, âp(E) = {polynomials of degree =s/? on
; next define, for e ach element E,

and let
Vp x Wp cz V x W

be the Raviart-Thomas-Nedelec space of index p ̂  0 associated with this
décomposition [3, 5], given by

Yp = (fi ̂ (£>) n {/:^2-^l/
= ƒ . v£f on £ n £', £, E' e *S }

= f]

where vE dénotes the outward unit normal vector along dE, E s TS. It is
known [3, 5] that div Vp c Wp, a property we shall exploit later.

We seek ( / , up) e Vp x Wp so that

/ , g ) - («P, divg)+ , g) = <<?, g . »j> , v eVp ,

(upX w) - 0 ,

Equations (1.5) define the /?-version of the mixed finite element approxi-
mation for (1.3). This version is based on using a fixed mesh and increasing

vol. 26, n' 7, 1992



916 F A MILNER, M SURI

the degree of the fini te éléments (as opposed to the &-version that keep s the
degree fixed and refines the mesh). The ^-version has been analyzed for the
linearized version of ( 1.1 ) in terms of the standard variational form in [ 1 ] and
in terms of the mixed variational form in [6]. In this paper, we extend the
results obtained in [6] for the linear problem to the quasilinear case. We also
obtain an improved version of lemma 3.1 of [6] by reducing the regularity
assumed there. We restrict our attention to the mixed method, the corre-
sponding generalization for the standard finite element method is more
straightforward.

Milner [3] described the h-version of this method for the same problem,
demons trated the unique solvability (for small h) of the nonlinear algebraic
system (1.5) andderived error estimâtes in Ls (f2), 2 ^ s ==£ + oo, for the error
in w, and in //(div ; O ) for the error in z. The assumption there was that the
solution of (1.1) was in the space H2 + e (O ). In contrast, for the present paper
we shall need an extra half derivative, that is, u E H5n + S(f2).

We shall follow very closely the analysis of [3], In order to do so we shall
use the L2-projection onto Wp, Pp :L2 -• Wp

y given by

(ppw-w, x) = 0, xeWp, weW, (1.6)

for which the following approximation properties follow by repeating the
arguments of [4] in two dimensions and using interpolation from the cases
5 = 2 and s = oo :

\\ppw- w ||o s*z Qp~m + 3/2'Vs\\w\\m , s > 2 , 3/2 - 31 s ^ m , (1.7)

if w e Hm(O). We shall also use the Raviart-Thomas projection of
V onto Yp, TTP : V -+ Vp, [5] for which we shall demonstrate in Section 2 the
following approximation property :

|| ^ - ^ | |0^ÔP1 / 2~ r | |Hl | r , r > l / 2 , vsHr(nfn V . (1.8)

Our proof of (1.8) improves upon the one presented in [6], which imposed
extra regularity on v by requiring that r > 1. In contrast, the condition
r > 1/2 is optimal (see remark 2.1). We also obtain estimâtes for the
approximation properties of np in the W°7S(f2 )-norm.

We shall find very useful the following inverse-type inequalities, the two
dimensional form of the ones found in [4] :

x e L\n )nwp(orx£ Ls(n f n vp). (i.9)

The plan of the paper is as foiiows : in Section 2 we demonstrate (1.8), m
Section 3 we prove that, for/? sufficiently large, (1.5) is uniquely solvable

M2 AN Modélisation mathématique et Analyse numérique
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MIXED FTNITE ELEMENT METHODS : THE p-VERSION 917

and its solution (f,up) converges to (z, u) in V H L2 + £(O)2 x
L(2 + 4e) /e(/2) for any fixed e, 0 <Z e <è 1, and in Section 4 we establish the
rate of convergence of the approximation to the exact solution.

IL THE APPROXIMATION PROPERTIES OF <rrp

We recall that wp v is given locally (on every element E) by the following
relations (2.1) and (2.2) (see [5]) :

{brpv-v].vE, <p)Si = 0 , «0 6 ^ , , , (2.1)

where ( . , . ) s, 1 ̂  i ^ 4, dénotes the line intégral along each side
S, of the element E and ï?p is the set of all polynomials in one variable of
degree less than or equal to /?,

(TTPV-V, £)£ = 0, f eyp(E), (2.2)

where ( - , - ) £ dénotes the standard L2(£>inner product.
Now, let /? = [— 1, 1] x [— 1, 1] and let {^J / > 0 dénote the

L 2([- 1, l])-complete orthogonal Legendre polynomials. For any
v sH(div;R\ let

H*,y)=\t fx^.to^öO, I i^^.W^Cy)], (2.3)
L i = 0 ; = 0 i =0 j =o J

and let

rp+i p P p+i 1

«•'s^y)- E ^a.^F.w^cy), j; j; ̂ / . w f ^ ) .(2.4)
L. =G j =0 i =0 j =0 j

It follows from (2.2)-(2.4) that

\bkl = \i i 0 ̂  k =s p , 0 ^

Next, we see that (2.1), (2.3)-(2.5) imply that

p+ 1 oo

J è , , ; P / ± l ) = X & , , , / > , ( ± 1 ) , 0 * 1 « p .
7 = P 7 = P

vol. 26, n° 7, 1992



918 R A . MILNER, M. SURI

Since Pt(- 1 ) = ( - 1 )' and Pt(l) = 1, (2.6) implies that

00 00

pj = X a 2 ' + P W ' aP+hj = £ a 2 i + p + l , j > 0 * . ƒ * / > ,

00 00 V '

PROPOSITION 2.1 : Ler g e V and let TTP V be its Raviart-Thomas projection
in Vp given by (2.1)-(2.2). Then, if v e Hr(f2)2, we have

||2-^2|lo*fiPiy2"rll2llr. r>H2,
where Q > 0 is a constant independent of p and v but depending on r.

Proof : We first assume that O = R and that the décomposition consists of
just one element. Then, v G V and wpv e Vp can be given, respectively, by
(2.3) and (2.4).

The following relation is a trivial conséquence of well known properties of
the Legendre polynomials,

\v — irFv\\ = y y — — h ^p{2i
p + 1 00 ^ Q^ 00 p + 1 4

+ iii + y y —hi

+ y y ^hi +

r À <2i D(2 i)

^ ^ (2i l)(2 1), (2i + l)(2y + 1) ^ , (2/

i = p + 2 j = p+l v / x J ' i =p+\ j ^ p + 2 v

= I + II H H VIII .

Note that III-VIII can be bounded as follows :
a2 (1 + i2 H- i2Y

while

which implies that (see [6])

III + . . . + VIII=£Öp-2r | |i;| |2, r ^ O . (2.9)

M2 AN Modélisation mathématique et Analyse numénque
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MIXED FINITE ELEMENT METHODS • THE p-VERSION 919

On the other hand, it follows from (2.7) that

and

2JT1 +2^T3^0 27T1
(2.10)

II = „ 4
 t f

2 p + l ^

7_=0

2Ï + 1

2

4
2/7+ 1 ^ 2i + 1 2/? + 3 ^ 2 Ï + 1

OD

Next observe that bounding the series Y (c + fc2)"* ( 1 + 2 ^ ; ) using the

f00 ~P+ A'
intégral method for (c + ?2)~s (1 + 2 f ) dt =s= rP2~2s ( £ > ! ) > and

J 5—1
using the Cauchy-Schwarz inequality, we see that, for 5 bounded away from
1,

x (1 + 4 / + 2 / 7 )

^ n 2 i + 1 ^
00 i/2 (̂ 1 + / 2 + /2

OP2 -2 j y -^- —
^ 21 + i

2 / + 1 (2.12)

vol. 26, n° 7, 1992



920 F A. MILNER, M SURI

with exactly the same final bound holding for I £ a2l +p + iw I - It follows

from (2.10) and (2.12) that, for s bounded away from 1,

In an entirely analogous way (replacing a ( i / by bl} and reversing the rôles of

i and j) we deduce from (2.11) that, for s bounded away from 1,

Combining (2.13) and (2.14) results, for s bounded away from 1, in

I + I I ^ Ö / ? 1 - 2 5 ! ! ^ 2 . (2.15)

Next note that

» 2 ( x , ± l ) = J J è , / ;

The trace theorem (Sobolev 's embedding theorem) implies that vu

L2(BR) for s > 1/2. Consequently, since Pt(l) = 1 and Pt(- l) = ( -
we see from (2.16) that

Y (+ 1 Y a
CX) ,

00

r °° v
L/ = o J

(2.17)

- 0

Let now v e Hm+£ (H )2. We shall prove that

I k l l . (2.18)

M2 AN Modélisation mathématique et Analyse numérique
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In view of (2.8) and (2.9) it is sufficient to prove that I, II < Qp~ 1E\\V\\ \a + g.

It follows from (2.10) that

x(2y + ir1[( i fl..i)2+( t ( -^X
y =0 L \ Ï =P + 2 / \i =p + 2

- O 1 = 0

4- ) ( — 1 ) 0 , . — ) ( - 1 ) al

\t=0 1=0

p I" / oo \ 2 / o o \ 2 (p+1

4»"1 y (2/ + i r 1 y a.. + ( y (— ïy a., ) + ( y a .
^ Li K J ' \ \ L 1>J \ Lu 1>J J \ L^ 1>J

j =0 L \ Ï =0 / \i =0 / \ i =0

4. /"vr iv \21+ l?o ("1) f l'")J
,2 /p + 1 \2l

+ ( £ (-DXy • (2-19)
; = 0 l _ \ t = 0 / \ i =0 /J

Note that the next to last term on the right hand side of (2.19) can be
bounded, using the intégral method for

Jo

^-1/2 - £ __ /->/„l - 2

as p -• oo, as follows :

2 P / + 1 û ? ( l + l 2 + j 2 ) 1 / 2 + 6

0 / y = 0

with an identical bound holding for the last term of (2.19). Combining (2.19)
and (2.20) and using Sobolev's embedding theorem yields

I^Qp-2*\\vJ2
m + s. (2.21)

vol 26, n" 7, 1992



922 F. A. MILNER, M. SURI

In an entirely analogous fashion we can see that

I ~ H 1/2 + e '

which together with (2.21) yields (2.18). Using interpolation [7], it follows
from (2.15) and (2.18) that, for s bounded away from 1/2,

which together with (2.8) and (2.9) concludes the proof for the case
O — R. For the case when £1 is a disjoint union of parallelograms the resuit
follows on each element by using affine mappings onto R. The proposition
then follows by summing over all the éléments (see [6] for details).

Remark 2.1 : This resuit differs from the one known for the A-version of
the finite element method [3, (1.5)],

| |2-*-*£ | | 0 <ÖA r | |2 l | r , r > l / 2 . (2.22)

The constraint r :> 1/2 (or r ^ 1/2 + e) stems from the fact that, according to
the trace theorem, this is the minimal requirement to ensure that v has a trace
on the boundary which is an L2-function (not just a distribution). In [6] the
corresponding resuit required an additional half derivative o n r ( r > l ) . In
contrast, proposition 2.1 assumes the minimum regularity necessary. It is
possible, however, that the bound still holds with the exponent of p replaced
by — r, as suggested by (2.22).

COROLLARY 2.1 : For s s* 2, r > max {1/2 ; 3/2 - 3As},

^ I I ^ Q p \ \ v \ \ .
'"" M 0 j •*—• * 11 <-~ 11 y

Proof : Let Pp v be the L2-projection Pp xPp :Y ^>VP. Then the following
analogue of (1.7) holds :

\ \ \ \ O s ™\\v\\r, s ^ 2 , 3/2 -3/s*r. (2.23)

Also,

I K ' B - 2 | | O t , * | | f ' E - s | a i + | | i r ' 2 - C ' 8 | O L , . (2-24)

The second term in this expression may be bounded using the inverse
inequality (1.9) as follows :

II^Pi; -ppv\\ ^Qp2-4/s\\<7Tpv -Ppv\\

-v\\o+\\7rPv-v\\o). (2.25)

Combining (2.23)-(2.25) and using proposition 2.1, we obtain the corollary.

M2 AN Modélisation mathématique et Analyse numérique
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III. SOLVABILITY OF THE DISCRETE PROBLEM

Following [3] we introducé, for p e Wp, the notation

a(p)- a(u) = - au(p)(u- p) = - au(u)(u- p) + auu(p)(u - pf ,
(3.1)

where

au(p) = au(
Jo

u(p + t[u- p])dt ,

Jo

and

^uu(P)- O*-t) a^iu+ t[p -u])dt ,

Jo

are bounded functions in Ö. Similarly, we write

(u - p ) = - pu{u){u - p ) + Puu(p ){u - pf ,(3.2)

and

c ( p ) - C ( M ) = - cu{p){u- p) = - cu(u)(u - p) + cuu(p)(u - p ) 2 ,
(3.3)

where ySH(p ), )8MW(p ), cu(p ), and cMU(p ) are bounded functions in Ö. Also,
let

T = «M(w)^+i?u(w), 7 =cu(u). (3.4)

With the notation of (3. l)-(3.4), the following error équations follow from
(1.3) and (1.5), [3]:

(a(u)[7rP z- / ] , g ) - (divE, Pp u - up) + ([Pp u - up] T, Ü) =

= {q(up, / ) , 2 ) . £ e V ^ ,

(div | > * z - ƒ ] , w ) + ( r [ i > / ' « - w p ] , w ) = (T?(MPX W ) , W G W ^ ,

(3.5)

where

q(up, / ) = a (U)[TTP z - z] + [Pp u - u] F +

+ (a - M^)2 [aWtt(^) z + l ™ , ^ ) ] + au(w^)(M - up)(z - / ) , (3.6)

vol. 26, n° 7, 1992



924 F. A. MILNER, M. SURI

and

V (*/) = y [Pp M - M] + cm(up)(u - upf . (3.7)

Just as in [3], we let

&:VpxWp-+Vp xW

be given by &((/JL, p)) = (A, K \ (A, K ) being the (unique) solution of the
System

( a ( u ) [ 7 T p z - A ] , g ) - ( d i v g , P p u - K ) + ( [ P p u - K ] F , V ) =

= (?(p, /j), g) , g e V ' ,

(div [np z — A ], w)+ (y [Pp u — K], w) = (v (p ), w), w e Wp ,

(3.8)

where q{p, JA) and 17 (p) are given by (3.6) and (3.7), respectively,
replacing up by p and z*7 by JJL . The unique solvability of this (linear) system
follows, for p sufficiently large, from [2], since the left hand side of (3.8)
corresponds to the mixed method for the operator M :H2(I2) n HQ(O ) -•
L2(f2) given by

Mw — — V . (a (w ) Vw + a (u ) W.T ) + y o> ,

which has a bounded inverse. In fact, note that (1.2), (1.4) and (3.4) give

Mw = - V . [a(u) Vw + a(u)w(au(u) z+ /3u(u))] + cM(w) w

= - V. \a(u)Vw-ha(u)w\-^- (-a(u)Vu) + a (u) bu(u)]\ +
L L a2(u) JJ

= - V . [a(w) Vw + (

which shows that M is the linearization of the operator & in (1.1) about the
function w, and, thus, it has a bounded inverse since we have assumed that
(1.1) admits unique isolated solutions.

The solvability of (1.5) is now equivalent to showing that <P has a fixed
point. This will follow from the Brouwer fixed point theorem if we show that
<P maps a bail of Vp x Wp into itself. We shall need the following technical
resuit, a p-version of lemma 2.1 of [3]. Let e > 0 be fixed for the rest of the
paper, e < 1.

M2 AN Modélisation mathématique et Analyse numérique
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LEMMA 3.1 : Let 2 =s 0 =s 4 - s. Let <o sV9 qe L2(ü )2, and rj e L2(ft ).

If T eWp satisfies

Ua(u)<o9 g ) - ( d i v 2 , r ) + ( r f , g ) = (<gr, g ) , v e Vp
 9

I ( d i v # , H > ) + ( y T , <w) = ( 7 7 , w ) , W G W p ,

, there exists a constant C = C (0, u, a, F, y, O, e) such that, for p
sufficiently large, depending upon e,

Proof : We follow the proof of lemma 2.1 of [3]. Let 6' = 9/(0 - 1 ) be
the conjugate exponent of 6. For $ G Le'(O) let <(> eW2>e\n) be the
(unique) solution of M* <f> = tf/ in O, t// = 0 on 8/2, where M* is the formai
adjoint of M, It follows that || $ ||2 Q, =s Q || $ ||0 0I. We then have [3],

(r, if,) = O?, Ö ( M ) V ^ ) + (*?, 7TPa(u)V<f> -a(u)Y<f>) +

+ (div o> + yr, <f> — Pp <f>)

+ (a(u)(o + r f , a(u)Y<l> - TTP a(u)Y<t>) + (v* <t> ) + (V> Pp <t> ~ 4* ) •

(3.9)

Note that Sobolev's embedding theorem implies that

| | | H ^ 6),. ( 3 . 1 0 )

Next, (1.8) and Sobolev's embedding theorem imply that

(q — a (M) <O, 7TPa(u) V<£ — a(u) Y<f> ) ^

and that

JT, a(u)Y<f> - 7rpa(u)Y<f>)^C\\T\\0 0 \\a(u)Y<t> -

On the other hand, (1.7) and Sobolev's embedding theorem lead to

(d iv« , <f> -Pp <t>)^K\\àiw<o\\Qp-l'2{e\\<f>\\2e,, (3.13)

( y r , <f>-Pp<f>) * K \ \ r \ \ O t d p - l - 2 / 0 \\<f> \\2^$, , (3.14)

vol. 26, n° 7, 1992



926 F A. MILNER, M SURI

and

(V,<P)+(v,Pp<f>-<f>)^K\\V\\0\\^\\0^K\\v\\0U\\xe,. (3.15)

Collecting (3.9)-(3.15) we see that

(r , ^ ) 1 ' 2 ^ 1 ^

which, for p sufficiently large, yields the desired estimate.
Now let i£p - Vp with the stronger norm || v \\ rP = || v \\ Q 2 + g + || div v \\ Q

and let i^p = Wp with the stronger norm U w H ^ - ||w||0 r where
4 + 2 s

t = . We can prove now the existence of a solution of (1.5).

THEOREM 3.1 : For ô > 0 sufficiently small (dependent on p) and for p
sufficiently large, <P map s a bail of radius ô center ed at (TTP Z, PP U) of
-Tp x i1Tp into itself.

Proof: Note that Ut + 1/(2 + e) = 1/2. Let

IK^-dU^0 and

Let us use lemma 3.1 on (3.8) with r — Pp u — K, w = TTP z — A,
q = q(p, JJL\ v = r] (p) and 8 = 4 - e. Observe that (1.7)-(1.9) and

corollary 2.1 imply that, for r > 1/2, m = r + 1,

+ || V (P)||o -s 3. \pm~r\\ z\\r + p - m | | « | | m + ||« - P ||^,4 +

- « +3/2-3/» |

l l r + i ; ' (3.16)
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where ü dépends on ||w||m. Therefore,

x lldiv (TTP z- A ) | l + 82 + pm-r] . (3.17)

On the other hand, taking v = irp z — A and w = Pp u - K in (3.8), we see
that

\\irpz-à\\0>*2[\\Ppu-K\\0+ \\q\\Q + N | | o ] , (3.18)

and, taking w = div (TTP z - A) in the second équation of (3.8) results in

| | | | | | | | . (3.19)

Combining (3.17)-(3.19) yields the relation

which, for p sufficiently large and r = 5/2, implies that

where the constant ü dépends on || u ||7/2. Combining (3.20) with (1.9) we see

that

while (1.9), (3.18), (3.16), and (3.20) imply that

I l i r ' z - A l l , * s 2 p 2 e l ( - 2 + e ) \ \ i r P z - A l l
II - - l l o . 2 + . V II - - H o ( 3 _ 2 2 )

**2(ps 62 + p-2+e).

Combining (3.19) and (3.22) yields

- ' * - A | | ^ , * J 2 ( p l « 2 + / r 2 + ' ) . (3.23)

We can now combine (3.21) and (3.23) in the bound

l |J"«-*ll , r ,+ \\"pi- iWr^SitP1-"* S2 + P-1-"4)- (3-24)

We want to choose p and ô so that llp
l~8/4 d2^— and â{ p~ l ~ e/4 ^ — .
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Let p s= (2MX )4/% so that I = 2 J j p-! "£/4, ̂  is not empty. Then,

for S e l , (3.24) implies that

- KW^^Ô and | | i r ' z - A | | r , ^ ô ,

as we needed.

Remark 3.1 : Note that the choice ô = 2 2LX p~1 " e/4 in theorem 3.1 shows
(using (1.7) and (1.8)) not only that (1.5) is solvable but also that, for
p -> oo, the solution of (1.5), ( / , up\ differs from (z, M) in the %* x
T^^ norm by 0(p~ l~m) at most. We shall need this observation in order to
arrive at the correct error estimâtes.

4. THE Z,2-ERROR BOUNDS

Just as in [3], using (3.1)-(3.3) we now rewrite (3.5) in the form

{a (u) Z, V) - (div g, r ) + ( T / \ g) = (4f, g) , g e Vp ,
(4.1)

(div £, w) + (yr, w) = (77, w) , W Ê F ,

where £ = z - / , T=P?U-UP, F = au(u
p) f + Pu(uP), y = cu{tf\

q = (Fp u -u) F, and ?? = (Fp u - M) y. Note that the left hand side of

(4.1) corresponds to the mixed method for the operator Af : H2(fï)-+
L2(O) given by

Nvv = — V . (a(u) Vw 4- a(w) wf) + yw .

Therefore, if we show that its formai adjoint, N *, has a bounded inverse
L2 -• H2(O) H H\(O)% then lemma 3.1 would apply to (4.1) without any
change in the proof. Since we know that M* has a bounded inverse, ail we
need to do is to check that the operator norm of M* - Af* can be made
arbitrarily small by taking p large enough.

LEMMA 4.1 : There exists a positive integer p0 such that, for all
pi*p0, N* has a bounded inverse L2(D) -> H2(O) n H\(n ). (N * dépends
on p through y and F),

Proof : Just as in [3], we have
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au(u)- au(u
p)

where auu = and /3UU, and cm, defined by analogous
u — up

relations, are bounded functions in Ö. It follows from remark 3 1 and
Sobolev's embedding theorem that

as needed
To conclude, we establish the rate of convergence of (fy up) to

THEOREM 4.1 : Assume that the solution u of'(1.1) is in HV2(f2 ) There is a
positive constant Q, independent of p but dependent on |M|7/2 + 2fi, such
that, for p sufficiently large and m s= 7/2,

0 ll«-KpHo*fiP1-mIHm,

m) ||divC?-/)||0«j2P2-"Ill«IL

Proof In view of remark 3 1 and lemma 4.1, we can use lemma 3.1 on
(4 1) with (9=2. Thus,

2
+ p - 2 | | d i v ^ | o + j | ? | j o + | h | | o ] (4.2)

Note that remark 3.1 together with (1.7) lead to the following estimate for
r 5= 0, m > 3/2,

l?io+ IMIo= \\{P" u - u) f\\ + || (*»'«-«) y

(4 3)
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Combining (4.2), (4.3), (3.18), (3.19), (1.7) and (1.8) yields,

which, for p sufficiently large, leads to

\\r\\0^Cpl-m\\u\\mi m ^ 2 , (4.4)

where the constant C dépends on ||«||7/2. The first part of the theorem is an
immédiate conséquence of (1.7) and (4.4). On the other hand, it follows from
(1.8), (3.18), (4.3) and (4.4), that

which proves the second part of the theorem.
Finally, we deduce from (3.19), (1.7), (4.3) and (4.4) that

jldiv C ? - / ) | | o « jjdiv 2-PPàlV ZL+ |div (^"Z

which gives iii).

Remark4.1 : The estimate for the error in zis the best we could hope for in
view of (1.8). The estimate for the error in div z is optimal in rate and
regularity, while the one for u is probably not sharp in view of (1.7).
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